Combining probabilities with log-linear pooling : application to spatial data

Denis Allard ${ }^{1}$, Philippe Renard ${ }^{2}$, Alessandro Comunian ${ }^{2,3}$, Dimitri D'Or ${ }^{4}$

${ }^{1}$ Biostatistique et Processus Spatiaux (BioSP), INRA, Avignon CHYN, Université de Neuchâtel, Neuchâtel, Switzerland
${ }^{3}$ now at National Centre for Groundwater Research and Training, University of New South Wales, Sydney, Australia.
${ }^{4}$ Ephesia Consult, Geneva, Switzerland

SSIAB9, Avignon 9 - 11 May, 2012

General framework

- Consider discrete events : $A \in \mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}=\mathcal{A}$.
- We know conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, where the $D_{i} \mathrm{~s}$ come from different sources of information.
- We include the possibility of a prior probability, $P_{0}(A)$.
- Example:
- $A=$ soil type
- $\left(D_{i}\right)=\{$ remote sensing information, soil samples, a priori pattern,...\}

To provide an approximation of the probability $P\left(A \mid D_{1}, \ldots\right.$
the basis of the simultaneous knowledge of $P_{0}(A)$ and the
conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, without the know
joint model :

$$
P\left(A \mid D_{0}, \ldots, D_{n}\right) \approx P_{G}\left(P\left(A \mid D_{0}\right), \ldots, P\left(A \mid D_{n}\right)\right) .
$$

General framework

- Consider discrete events : $A \in \mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}=\mathcal{A}$.
- We know conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, where the $D_{i} \mathrm{~s}$ come from different sources of information.
- We include the possibility of a prior probability, $P_{0}(A)$.
- Example :
- $A=$ soil type
- $\left(D_{i}\right)=\{$ remote sensing information, soil samples, a priori pattern,...\}

Purpose

To provide an approximation of the probability $P\left(A \mid D_{1}, \ldots, D_{n}\right)$ on the basis of the simultaneous knowledge of $P_{0}(A)$ and the n conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, without the knowledge of a joint model :

$$
\begin{equation*}
P\left(A \mid D_{0}, \ldots, D_{n}\right) \approx P_{G}\left(P\left(A \mid D_{0}\right), \ldots, P\left(A \mid D_{n}\right)\right) \tag{1}
\end{equation*}
$$

Outline

- Mathematical properties
- Pooling formulas
- Scores and calibration
- Maximum likelihood
- Some results

Some mathematical properties

Convexity

An aggregation operator P_{G} verifying

$$
\begin{equation*}
P_{G} \in\left[\min \left\{P_{1}, \ldots, P_{n}\right\}, \max \left\{P_{1}, \ldots, P_{n}\right\}\right], \tag{2}
\end{equation*}
$$

is convex.

Some mathematical properties

Convexity

An aggregation operator P_{G} verifying

$$
\begin{equation*}
P_{G} \in\left[\min \left\{P_{1}, \ldots, P_{n}\right\}, \max \left\{P_{1}, \ldots, P_{n}\right\}\right], \tag{2}
\end{equation*}
$$

is convex.

Unanimity preservation
An aggregation operator P_{G} verifying $P_{G}=p$ when $P_{i}=p$ for $i=1, \ldots, n$ is said to preserve unanimity.
Convexity implies unanimity preservation.
In general, convexity is not necessarily a desirable property.

Some mathematical properties

External Bayesianity

An aggregation operator is said to be external Bayesian if the operation of updating the probabilities with the likelihood L commutes with the aggregation operator, that is if

$$
\begin{equation*}
P_{G}\left(P_{1}^{L}, \ldots, P_{n}^{L}\right)(A)=P_{G}^{L}\left(P_{1}, \ldots, P_{n}\right)(A) \tag{3}
\end{equation*}
$$

Imposing this property leads to a very specific class of pooling operators.

Some mathematical properties

External Bayesianity

An aggregation operator is said to be external Bayesian if the operation of updating the probabilities with the likelihood L commutes with the aggregation operator, that is if

$$
\begin{equation*}
P_{G}\left(P_{1}^{L}, \ldots, P_{n}^{L}\right)(A)=P_{G}^{L}\left(P_{1}, \ldots, P_{n}\right)(A) \tag{3}
\end{equation*}
$$

- It should not matter whether new information arrives before or after pooling
- Equivalent to the weak likelihood ratio property in Bordley (1982).
- Very compelling property, both from a theoretical point of view and from an algorithmic point of view.
Imposing this property leads to a very specific class of pooling operators.

Some mathematical properties

0/1 forcing
An aggregation operator which returns $P_{G}(A)=0$ if $P_{i}(A)=0$ for some $i=1, \ldots, n$ is said to enforce a certainty effect, a property also called the $0 / 1$ forcing property.

Linear pooling

Linear Pooling

$$
\begin{equation*}
P_{G}(A)=\sum_{i=0}^{n} w_{i} P_{i}(A) \tag{4}
\end{equation*}
$$

where the w_{i} are positive weights verifying $\sum_{i=0}^{n} w_{i}=1$

- Convex \Rightarrow preserves unanimity.
- Neither verify external bayesianity, nor 0/1 forcing
- Cannot achieve calibration (Ranjan and Geniting, 2010).

Ranjan and Gneiting (2010) proposed a Beta transformation of the linear pooling. Parameters are estimated via ML.

Log-linear pooling

Log-linear pooling
A log-linear pooling operator is a linear operator of the logarithms of the probabilities :

$$
\begin{equation*}
\ln P_{G}(A)=\ln Z+\sum_{i=0}^{n} w_{i} \ln P_{i}(A) \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
P_{G}(A) \propto \prod_{i=0}^{n} P_{i}(A)^{w_{i}} \tag{6}
\end{equation*}
$$

where Z is a normalizing constant.

- Non Convex but preserves unanimity if $\sum_{i=0}^{n}=1$
- Verifies 0/1 forcing
- Verifies external bayesianity (Genest and Zidek, 1986)

Generalized log-linear pooling

Theorem (Genest and Zidek, 1986)

The only pooling operator P_{G} depending explicitly on A and verifying external Bayesianity is

$$
\begin{equation*}
P_{G}(A) \propto \nu(A) P_{0}(A)^{1-\sum_{i=1}^{n} w_{i}} \prod_{i=1}^{n} P_{i}(A)^{w_{i}} . \tag{7}
\end{equation*}
$$

No restriction on the $w_{i} s$; verifies external Bayesianity and $0 / 1$ forcing.

Generalized log-linear pooling

$$
\begin{equation*}
P_{G}(A) \propto \nu(A) P_{0}(A)^{1-\sum_{i=1}^{n} w_{i}} \prod_{i=1}^{n} P_{i}(A)^{w_{i}} \tag{8}
\end{equation*}
$$

The sum $S_{\mathbf{w}}=\sum_{i=1}^{n} w_{i}$ plays an important role.
Suppose that $P_{i}=p$ for each $i=1, \ldots, n$.

- If $S_{\mathbf{w}}=1$, the prior probability P_{0} is filtered out. Then, $P_{G}=p$ and unanimity is preserved
- if $S_{w}>1$, the prior probability has a negative weight and P_{G} will always be further from P_{0} than p
- $S_{w}<1$, the converse holds

Maximum entropy approach

Proposition

The pooling formula P_{G} maximizing the entropy subject to the following univariate and bivariate constraints $P_{G}\left(P_{0}\right)(A)=P_{0}(A)$ and $P_{G}\left(P_{0}, P_{i}\right)(A)=P\left(A \mid D_{i}\right)$ for $i=1, \ldots, n$ is

$$
\begin{equation*}
P_{G}\left(P_{1}, \ldots, P_{n}\right)(A)=\frac{P_{0}(A)^{1-n} \prod_{i=1}^{n} P_{i}(A)}{\sum_{A \in \mathcal{A}} P_{0}(A)^{1-n} \prod_{i=1}^{n} P_{i}(A)} \tag{9}
\end{equation*}
$$

i.e. it is a log-linear formula with $w_{i}=1$, for all $i=1, \ldots, n$. Proposed in Allard (2011) for non parametric spatial prediction of soil type categories.
$\{$ Max. Ent. $\} \subset\{$ Log linear pooling $\} \subset\{$ Gen. log-linear pooling $\}$.

Maximum Entropy for spatial prediction

Maximum Entropy for spatial prediction

Maximum Entropy for spatial prediction

Estimating the weights

Maximum entropy is parameter free. For all other models, how do we estimate the parameters?

We will minimize scores

The quadratic or Brier score (Brier, 1950) is defined by

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
I ararithmic conro
The logarithmic score corresponds to

Maximizing the logarithmic score \Leftrightarrow minimizing KL distance.

Estimating the weights

Maximum entropy is parameter free. For all other models, how do we estimate the parameters?

We will minimize scores
Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\sum_{j=1}^{K}\left(\delta_{j k}-P_{G}(j)\right)^{2} \tag{10}
\end{equation*}
$$

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
Logarithmic score
The logarithmic score corresponds to

Maximizing the logarithmic score \Leftrightarrow minimizing KL distance.

Estimating the weights

Maximum entropy is parameter free. For all other models, how do we estimate the parameters?

We will minimize scores
Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\sum_{j=1}^{K}\left(\delta_{j k}-P_{G}(j)\right)^{2} \tag{10}
\end{equation*}
$$

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
Logarithmic score
The logarithmic score corresponds to

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\ln P_{G}(k) \tag{11}
\end{equation*}
$$

Maximizing the logarithmic score \Leftrightarrow minimizing KL distance.

Maximum likelihood estimation

Maximizing the logarithmic score \Leftrightarrow maximizing the log-likelihood.
Let is consider M repetitions of a random experiment. For $m=1, \ldots, M$:

- conditional probabilities $P_{i}^{(m)}\left(A_{k}\right)$
- aggregated probabilities $P_{G}^{(m)}\left(A_{k}\right)$
- $Y_{k}^{(m)}=1$ if the outcome is A_{k} and $Y_{k}^{(m)}=0$ otherwise

$$
\begin{align*}
L(\mathbf{w}, \boldsymbol{\nu})= & \sum_{m=1}^{M} \sum_{k=1}^{K} Y_{k}^{(m)}\left\{\ln \nu_{k}+\left(1-\sum_{i=1}^{n} w_{i}\right) \ln P_{0, k}+\sum_{i=1}^{n} w_{i} \ln P_{i, k}^{(m)}\right\} \\
& -\sum_{m=1}^{M} \ln \left\{\sum_{k=1}^{K} \nu_{k} P_{0, k}^{1-\sum_{i=1}^{n} w_{i}} \prod_{i=1}^{n}\left(P_{i, k}^{(m)}\right)^{w_{i}}\right\} . \tag{12}
\end{align*}
$$

Calibration

Calibration

The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{13}
\end{equation*}
$$

[^0]
Calibration

Calibration

The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{13}
\end{equation*}
$$

Theorem (Ranjan and Gneiting, 2010) Linear pooling cannot be calibrated.

[^1]
Calibration

Calibration

The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{13}
\end{equation*}
$$

Theorem (Ranjan and Gneiting, 2010) Linear pooling cannot be calibrated.

Theorem (Allard et al., 2012)
If there exists a calibrated log-linear pooling, it is, asymptotically, the (generalized) log-linear pooling with parameters estimated from maximum likelihood.

Measure of calibration and sharpness

Recall Brier score

$$
\begin{equation*}
B S=\frac{1}{M}\left\{\sum_{k=1}^{K} \sum_{m=1}^{M}\left(P_{G}^{(m)}\left(A_{k}\right)-Y_{k}^{(m)}\right)^{2}\right\} \tag{14}
\end{equation*}
$$

It can be decomposed in the following way :

$$
B S=\text { calibration term }+ \text { sharpness term }+ \text { Cte }
$$

- Calibration must be close to 0
- Conditional on calibration, sharpness must be as high as possible

First experiment : truncated Gaussian vector

- One prediction point s_{0}
- Three data s_{1}, s_{2}, s_{3} defined by distances d_{i} and angles θ_{i}
- Random function $X(s)$ with exp. cov, parameter 1
- $D_{i}=\left\{X\left(s_{i}\right) \leq t\right\}$
- $A=\left\{X\left(s_{0}\right) \leq t-1.35\right\}$
- 10,000 simulated thresholds so that $P(A)$ is almost uniformly sampled in $(0,1)$

First case : $d_{1}=d_{2}=d_{3} ; \theta_{1}=\theta_{2}=\theta_{3}$

	Weight	Param.	-Loglik	BIC	BS	CALIB	SHARP
P_{1}	-	-	5782.2		0.1943	0.0019	0.0573
P_{12}	-	-	5686.8		0.1939	0.0006	0.0574
P_{123}	-	-	5650.0		0.1935	0.0007	0.0569
Lin.	-	-	5782.2	11564.4	0.1943	0.0019	0.0573
BLP	-	$\alpha=0.67$	5704.7	11418.7	0.1932	0.0006	0.0570
ME	-	-	5720.1	11440.2	0.1974	0.0042	0.0564
Log.lin.	0.75	-	5651.4	11312.0	0.1931	0.0006	0.0571
Gen. Log.lin.	0.71	$\nu=1.03$	5650.0	11318.3	0.1937	0.0008	0.0568

- Linear pooling very poor ; Beta transformation is an improvement
- Gen. Log. Lin : highest likelihood, but marginally
- Log linear pooling : lowest BIC and Brier Score
- Note that $S_{w}=2.25$

Second case : $\left(d_{1}, d_{2}, d_{3}\right)=(0.8,1,1.2) ; \theta_{1}=\theta_{2}=\theta_{3}$

	Weight	Param.	- Loglik	BIC	BS	CALIB	SHARP
P_{1}	-	-	5786.6		0.1943	0.0022	0.0575
P_{12}	-	-	5730.8		0.1927	0.0007	0.0577
P_{123}	-	-	5641.4		0.1928	0.0009	0.0579
Lin.eq	$(1 / 3,1 / 3,1 / 3)$	-	5757.2	11514.4	0.1940	0.0018	0.0575
Lin.	$(1,0,0)$	-	5727.2	11482.0	0.1935	0.0015	0.0577
BLP	$(1,0,0)$	$\alpha=0.66$	5680.5	11397.8	0.1921	0.0004	0.0580
ME	-	-	5727.7	11455.4	0.1972	0.0046	0.0571
Log.lin.eq.	$(0.72,0.72,0.72)$	-	5646.1	11301.4	0.1928	0.0006	0.0576
Log.lin.	$(1.87,0,0)$	-	5645.3	11318.3	0.1928	0.0007	0.0576
Gen. Log.lin.	$(1.28,0.53,0)$	$\nu=1.04$	5643.1	11323.0	0.1930	0.0010	0.0576

- Optimal solution gives 100% weight to closest point
- BLP : lowest Brier score
- Log. linear pooling : lowest BIC ; almost calibrated

Second experiment : Boolean model

- Boolean model of spheres in 3D
- $A=\left\{s_{0} \in\right.$ void $\}$
- 2 data points in horizontal plane +2 data points in vertical plane conditional probabilities are easily computed
- Uniformly located in squares around prediction point
- 50,000 repetitions
- $P(A)$ sampled in $(0.05,0.95)$

Second experiment : Boolean model

	Weights	Param.	- Loglik	BIC	BS	CALIB	SHARP
P_{0}	-	-	29859.1	59718.2	0.1981	0.0155	0.0479
P_{i}	-	-	16042.0	32084.0	0.0892	0.0120	0.1532
Lin.	$\simeq 0.25$	-	14443.3	28929.9	0.0774	0.0206	0.1736
BLP	$\simeq 0.25$	$(3.64,4.91)$	9690.4	19445.7	0.0575	0.0008	0.1737
ME	-	-	7497.3	14994.6	0.0433	0.0019	0.1889
Log.lin	$\simeq 0.80$	-	7178.0	14399.3	0.0416	0.0010	0.1897
Gen. Log.lin.	$\simeq 0.79$	$\nu=1.04$	$\mathbf{7 1 7 2 . 9}$	14399.9	0.0417	0.0011	$\mathbf{0 . 1 8 9 8}$

- Log. lin best scores.
- Gen. Log. lin has marginally higher liklihood, but BIC is larger
- BS is significantly lower for Log. lin. than for BLP

Conclusions

New paradigm for spatial prediction of categorical variables : use multiplication of probabilities instead of addition.

- Demonstrated the usefulness of lig-linear pooling formula
- Optimality for parameters estimated by ML
- Very good performances on tested situations
- Outperforms BLP in some situations

[^2]
References

Allard D, Comunian A and Renard P (2012) Probability aggregation methods in geoscience Math Geosci DOI : 10.1007/s11004-012-9396-3
Allard D, D'Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J S Sci 62(3) :381-393Genest C, Zidek JV (1986) Combining probability distributions: A critique and an annotated bibliography. Stat Sci 1 :114-148
\square
Ranjan R Gneiting T (2010) Combining probability forecasts. J Royal Stat Soc Ser B 72:71-91

[^0]: Theorem (Ranian and Gneitio, 2010) Linear pooling cannot be calibrated.

 Theorem (Allard et al., 2012) If there exists a calibrated log-linear pooling, it is, asymptotically, the (generalized) log-linear pooling with parameters estimated from maximum likelihood.

[^1]: Theorem (Allard et al., 2012)

 maximum likelihood.

[^2]: To do
 Implement Log-linear pooling for spatial prediction. Expected to outperform ME.

