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Dataset 1: Barrows

◮ A barrow is a bronze age
burial site resembling a
small hill.

◮ These are important sources
of information for
archaologists.

◮ They are often placed
roughly in linear structures.
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Dataset 2: Mountain tops

◮ Mountains ridges means
that “local” tops are often
forming linear structures.
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Linear structures

◮ In this talk we will consider a model capable of generating
linear formations.

◮ Roughly speaking, this model generates linear structures by
moving points closer to other points.

◮ Interpretation of the model:
◮ Barrows: Here the model is interpreted as dead people are

buried close to previously buried people.
◮ Mountains: No reasonable interpretation - the model should

not be thought of as representing actual mechanics.
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Model construction

◮ Point process x defined on window W .

◮ x = xc ∪ xb with n points.

◮ Number of points in xc , k , is binom(n, q).

◮ Background process:
◮ xb consists of i.i.d. uniformly distributed points on W

◮ Cluster process:
◮ Sequential construction.
◮ A point is initially uniformly distributed independently of

everything else.
◮ With probability p this point is moved closer to the closest

previous point; otherwise it keeps its original position.
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Voronoi tesselations
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◮ Voronoi tesselation: an area is associated with the closest
point in the point process
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Moving points

x1 x2

x3
x4

y4

◮ Density for new position:

h(xi |{x1, . . . , xi−1};σ
2) ∝ exp(−r2i /(2σ

2)), 0 < ri < li

◮ Other distributions have also been tried.
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Simulation algorithm

Fix number of points, and for each point do the following:

1. Find type of point i (cluster with prob. q, background
otherwise)

2. If background point:

2.1 Find coordinates - uniformly distributed on W

3. If cluster point:

3.1 Find initial coordinates - uniformly distributed on W

3.2 Move with probability p, otherwise keep position
3.3 If move, find closest cluster point and move new point closer

to this using Exp-distribution

10 / 19



Two simulations

q = 0.95, p = 0.95, σ = 70 q = 0.90, p = 0.90, σ = 130

Remember:
◮ q is the probability that a point is a cluster point (i.e. belongs

to a linear structure)
◮ p is the probability is that a cluster point is moved (i.e.

continues an existing linear structure)
◮ σ governs how close points in lines are located to each other
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Likelihood and priors

◮ Let z be the observed point pattern x including type
(cluster/background) and order of points.

◮ Likelihood:

L(q, p, σ2|z) =

(

n

k

)

qk
(

1− q

|W |

)n−k k
∏

i=1

f (xi |x1, . . . , xi−1; p, σ
2)

where

f (·|x1, . . . , xi−1; p, σ
2) = p×h(·|{x1, . . . , xi−1};σ

2)+(1−p)×
1

|W |

◮ Priors:
◮ Independent priors for p, q, σ.
◮ p, q: Uniform on [0, 1].
◮ σ: Flat inverse gamma or (improper) uniform on [0,∞).
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Estimation of parameters

◮ Ideally we would find mean/maximum of the posterior

p(q, p, σ2|x) ∝ g1(p)g2(q)g3(σ
2)L(q, p, σ2|x)

but we only have closed form expression for L(q, p, σ2|z), not
L(q, p, σ2|x).

◮ So we have a missing data problem:
◮ The order of xc = {x1, . . . , xk} is unknown.
◮ Also it is unknown whether a point belongs to xc or xb.

◮ So we need to approximate the estimates of p, q, σ and the
missing data by Markov chain Monte Carlo.
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MCMC

◮ We use Metropolis within Gibbs to obtain posterior.

◮ Updates:
◮ A background point becomes a cluster point.
◮ A cluster point becomes a background point.
◮ Shifting the ordering of two succeeding cluster points.
◮ Parameters p, q and σ2: Metropolis update, normal proposal.

◮ Hastings ratios are easily obtained.

◮ Calculation times are not too bad.

◮ Mixing is fair.
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Posterior distributions - parameters

Barrows:
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Mountains:
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Posterior distributions - missing data

Circle radius indicates marginal posterior probability of a point
being a cluster point.

17 / 19



Posterior distributions - missing data

Circle radius indicates the order in which the cluster points occur.
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Concluding remarks

◮ Summing up: a new model with linear structures and
MCMC-based Bayesian inference

◮ Model checking skipped in this talk

◮ Many extensions/modifications possible, e.g. inclusion of
covariates, initial placements or moving mechanims

Thank you for your attention :-)
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