ション ふゆ マ キャット キャット しょう

Statistical aspects of determinantal point processes

Jesper Møller,

Department of Mathematical Sciences, Aalborg University.

Joint work with Frédéric Lavancier,

Laboratoire de Mathématiques Jean Leray, Nantes,

and

Ege Rubak,

Department of Mathematical Sciences, Aalborg University.

May 6, 2012

Introduction	Definition	Simulation	Parametric models	Inference

2 Definition, existence and basic properties

3 Simulation

4 Parametric models

Introduction	Definition	Simulation	Parametric models	Inference
Introduction	n			

- Determinantal point processes (DPP) form a class of repulsive point processes.
- They were introduced in their general form by O. Macchi in 1975 to model fermions (i.e. particules with repulsion) in quantum mechanics.
- Particular cases include the law of the eigenvalues of certain random matrices (Gaussian Unitary Ensemble, Ginibre Ensemble,...)
- Most theoretical studies have been published in the 2000's.
- The statistical aspects have so far been largely unexplored.

Introduction	Definition	Simulation	Parametric models	Inference
Examples				

Poisson

DPP

DPP with stronger repulsion

ъ

ž

・ロト ・ 日 ・ ・ 田 ト

Introduction	Definition	Simulation	Parametric models	Inference
Statistical r	notivation			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Introduction	Definition	Simulation	Parametric models	Inference
Statistical n	notivation			

 \longrightarrow Answer: **YES**.

Introduction	Definition	Simulation	Parametric models	Inference
Statistical	motivation			

 \longrightarrow Answer: **YES**.

In fact:

- DPP's can be easily simulated.
- There are closed form expressions for the moments.
- There is a closed form expression for the density of a DPP on any bounded set.

うして ふゆう ふほう ふほう ふしつ

• Inference is feasible, including likelihood inference.

Introduction	Definition	Simulation	Parametric models	Inference
Statistical	motivation			

 \longrightarrow Answer: **YES**.

In fact:

- DPP's can be easily simulated.
- There are closed form expressions for the moments.
- There is a closed form expression for the density of a DPP on any bounded set.
- Inference is feasible, including likelihood inference.

These properties are unusual for Gibbs point processes which are commonly used to model inhibition (e.g. the Strauss process).

うして ふゆう ふほう ふほう ふしつ

Introduction	Definition	Simulation	Parametric models	Inference

2 Definition, existence and basic properties

3 Simulation

Introduction	Definition	Simulation	Parametric models	Inference
Notation				

■ We view a spatial point process X on ℝ^d as a random locally finite subset of ℝ^d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Definition	Simulation	Parametric models	Inference
Notation				

■ We view a spatial point process X on ℝ^d as a random locally finite subset of ℝ^d.

• For any borel set $B \subseteq \mathbb{R}^d$, $X_B = X \cap B$.

Introduction	Definition	Simulation	Parametric models	Inference
Notation				

- We view a spatial point process X on ℝ^d as a random locally finite subset of ℝ^d.
- For any borel set $B \subseteq \mathbb{R}^d$, $X_B = X \cap B$.
- For any integer n > 0, denote ρ⁽ⁿ⁾ the n'th order product density function of X.
 Intuitively,

$$\rho^{(n)}(x_1,\ldots,x_n)\,\mathrm{d}x_1\cdots\mathrm{d}x_n$$

is the probability that for each i = 1, ..., n, X has a point in a region around x_i of volume dx_i .

Introduction	Definition	Simulation	Parametric models	Inference
Notation				

• We view a spatial point process X on \mathbb{R}^d as a random locally finite subset of \mathbb{R}^d .

• For any borel set $B \subseteq \mathbb{R}^d$, $X_B = X \cap B$.

For any integer n > 0, denote ρ⁽ⁿ⁾ the n'th order product density function of X.
 Intuitively,

 $\rho^{(n)}(x_1,\ldots,x_n)\,\mathrm{d}x_1\cdots\mathrm{d}x_n$

is the probability that for each i = 1, ..., n, X has a point in a region around x_i of volume dx_i .

In particular $\rho = \rho^{(1)}$ is the *intensity function*.

For any function $C : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, denote $[C](x_1, \ldots, x_n)$ the $n \times n$ matrix with entries $C(x_i, x_j)$.

Ex.:
$$[C](x_1) = C(x_1, x_1)$$
 $[C](x_1, x_2) = \begin{pmatrix} C(x_1, x_1) & C(x_1, x_2) \\ C(x_2, x_1) & C(x_2, x_2) \end{pmatrix}$

ション ふゆ マ キャット キャット しょう

For any function $C : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, denote $[C](x_1, \ldots, x_n)$ the $n \times n$ matrix with entries $C(x_i, x_j)$.

Ex.:
$$[C](x_1) = C(x_1, x_1)$$
 $[C](x_1, x_2) = \begin{pmatrix} C(x_1, x_1) & C(x_1, x_2) \\ C(x_2, x_1) & C(x_2, x_2) \end{pmatrix}$

Definition

X is a determinantal point process with kernel C, denoted $X \sim \text{DPP}(C)$, if its product density functions satisfy

$$\rho^{(n)}(x_1,\ldots,x_n) = \det[C](x_1,\ldots,x_n), \quad n = 1, 2, \ldots$$

うして ふゆう ふほう ふほう ふしつ

For any function $C : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, denote $[C](x_1, \ldots, x_n)$ the $n \times n$ matrix with entries $C(x_i, x_j)$.

Ex.:
$$[C](x_1) = C(x_1, x_1)$$
 $[C](x_1, x_2) = \begin{pmatrix} C(x_1, x_1) & C(x_1, x_2) \\ C(x_2, x_1) & C(x_2, x_2) \end{pmatrix}$

Definition

X is a determinantal point process with kernel C, denoted $X \sim \text{DPP}(C)$, if its product density functions satisfy

$$\rho^{(n)}(x_1,\ldots,x_n) = \det[C](x_1,\ldots,x_n), \quad n = 1, 2, \ldots$$

ション ふゆ マ キャット マックタン

The Poisson process with intensity $\rho(x)$ is the special case where $C(x, x) = \rho(x)$ and C(x, y) = 0 if $x \neq y$.

For any function $C : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$, denote $[C](x_1, \ldots, x_n)$ the $n \times n$ matrix with entries $C(x_i, x_j)$.

Ex.:
$$[C](x_1) = C(x_1, x_1)$$
 $[C](x_1, x_2) = \begin{pmatrix} C(x_1, x_1) & C(x_1, x_2) \\ C(x_2, x_1) & C(x_2, x_2) \end{pmatrix}$

Definition

X is a determinantal point process with kernel C, denoted $X \sim \text{DPP}(C)$, if its product density functions satisfy

$$\rho^{(n)}(x_1,\ldots,x_n) = \det[C](x_1,\ldots,x_n), \quad n = 1, 2, \ldots$$

The Poisson process with intensity $\rho(x)$ is the special case where $C(x, x) = \rho(x)$ and C(x, y) = 0 if $x \neq y$.

<u>For existence</u>, conditions on the kernel C are mandatory, e.g. C must satisfy: for all x_1, \ldots, x_n , det $[C](x_1, \ldots, x_n) \ge 0$.

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \implies the points of X repel each other.

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

 \implies the points of X repel each other.

• The intensity of X is $\rho(x) = C(x, x)$.

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

\implies the points of X repel each other.

- The intensity of X is $\rho(x) = C(x, x)$.
- The pair correlation function is

$$g(x,y) := \frac{\rho^{(2)}(x,y)}{\rho(x)\rho(y)} = 1 - \frac{C(x,y)C(y,x)}{C(x,x)C(y,y)}$$

• Thus $g \leq 1$ (i.e. repulsiveness).

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

\implies the points of X repel each other.

- The intensity of X is $\rho(x) = C(x, x)$.
- The pair correlation function is

$$g(x,y) := \frac{\rho^{(2)}(x,y)}{\rho(x)\rho(y)} = 1 - \frac{C(x,y)C(y,x)}{C(x,x)C(y,y)}$$

• Thus $g \leq 1$ (i.e. repulsiveness).

• If $X \sim \text{DPP}(C)$, then $X_B \sim \text{DPP}_B(C_B)$

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

\implies the points of X repel each other.

- The intensity of X is $\rho(x) = C(x, x)$.
- The pair correlation function is

$$g(x,y) := \frac{\rho^{(2)}(x,y)}{\rho(x)\rho(y)} = 1 - \frac{C(x,y)C(y,x)}{C(x,x)C(y,y)}$$

- Thus $g \leq 1$ (i.e. repulsiveness).
- If $X \sim \text{DPP}(C)$, then $X_B \sim \text{DPP}_B(C_B)$
- Any smooth transformation or independent thinning of a DPP is still a DPP with explicit given kernel.

Introduction	Definition	Simulation	Parametric models	Inference
First proper	rties			

 $\rho^{(n)}(x_1,\ldots,x_n) \approx 0 \quad \text{whenever} \quad x_i \approx x_j \quad \text{for some } i \neq j,$

\implies the points of X repel each other.

- The intensity of X is $\rho(x) = C(x, x)$.
- The pair correlation function is

$$g(x,y) := \frac{\rho^{(2)}(x,y)}{\rho(x)\rho(y)} = 1 - \frac{C(x,y)C(y,x)}{C(x,x)C(y,y)}$$

- Thus $g \leq 1$ (i.e. repulsiveness).
- If $X \sim \text{DPP}(C)$, then $X_B \sim \text{DPP}_B(C_B)$
- Any smooth transformation or independent thinning of a DPP is still a DPP with explicit given kernel.

• There exists at most one DPP(C).

Introduction	Definition	Simulation	Parametric models	Inference
Existence				

In all that follows we assume

(C1) C is a continuous complex covariance function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Definition	Simulation	Parametric models	Inference
Existence				

In all that follows we assume

(C1) C is a continuous complex covariance function.

By Mercer's theorem, for any compact set $S \subset \mathbb{R}^d$, C restricted to $S \times S$, denoted C_S , has a spectral representation,

$$C_S(x,y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S,$$

where $\lambda_k^S \ge 0$ and $\int_S \phi_k^S(x) \overline{\phi_l^S(x)} \, \mathrm{d}x = \mathbf{1}_{\{k=l\}}$.

Introduction	Definition	Simulation	Parametric models	Inference
Existence				

In all that follows we assume

(C1) C is a continuous complex covariance function.

By Mercer's theorem, for any compact set $S \subset \mathbb{R}^d$, C restricted to $S \times S$, denoted C_S , has a spectral representation,

$$C_S(x,y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S,$$

where $\lambda_k^S \ge 0$ and $\int_S \phi_k^S(x) \overline{\phi_l^S(x)} \, \mathrm{d}x = \mathbf{1}_{\{k=l\}}$.

Theorem (Macchi, 1975; Hough et al., 2009; our paper) Under (C1), existence of DPP(C) is equivalent to that

 $\lambda_k^S \leq 1$ for all compact $S \subset \mathbb{R}^d$ and all k.

・ ロ マ ・ 白マ マ ・ 白 マ

Introduction	Definition	Simulation	Parametric models	Inference
Density	on a compact	set S		

・ロト ・ 日 ・ モー・ モー・ うへぐ

Let $X_S \sim \text{DPP}_S(C_S)$ with $S \subset \mathbb{R}^d$ compact. Recall that $C_S(x, y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}$.

Introduction	Definition	Simulation	Parametric models	Inference
Density or	n a compact	set S		

Let $X_S \sim \text{DPP}_S(C_S)$ with $S \subset \mathbb{R}^d$ compact. Recall that $C_S(x, y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}$.

Theorem (Macchi, 1975)

Assuming $\lambda_k^S < 1$, for all k, then X_S is absolutely continuous with respect to the homogeneous Poisson process on S with unit intensity, and has density

$$f(\{x_1,\ldots,x_n\}) = \exp(|S| - D) \det[\tilde{C}](x_1,\ldots,x_n),$$

where $D = -\sum_{k=1}^{\infty} \log(1 - \lambda_k^S)$ and $\tilde{C} : S \times S \to \mathbb{C}$ is given by

$$\tilde{C}(x,y) = \sum_{k=1}^{\infty} \frac{\lambda_k^S}{1 - \lambda_k^S} \phi_k^S(x) \overline{\phi_k^S(y)}$$

Introduction	Definition	Simulation	Parametric models	Inference

2 Definition, existence and basic properties

3 Simulation

Let $X_S \sim \text{DPP}_S(C_S)$ where $S \subset \mathbb{R}^d$ is compact.

We want to simulate X_S .

Recall that $C_S(x,y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}.$

うして ふゆう ふほう ふほう ふしつ

Let $X_S \sim \text{DPP}_S(C_S)$ where $S \subset \mathbb{R}^d$ is compact.

We want to simulate X_S .

Recall that $C_S(x,y) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}.$

Theorem (Hough et al., 2006)

For $k \in \mathbb{N}$, let B_k be independent Bernoulli r.v.'s with means λ_k^S . Define

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

Then $DPP_S(C_S) \stackrel{d}{=} DPP_S(K)$.

Introduction	Definition	Simulation	Parametric models	Inference

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Definition	Simulation	Parametric models	Inference

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Let $M = \max\{k \ge 0; B_k \ne 0\}$. Note that M is a.s. finite, since $\sum \lambda_k^S = \int_S C(x, x) \, \mathrm{d}x < \infty$.

Introduction	Definition	Simulation	Parametric models	Inferenc

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

Let $M = \max\{k \ge 0; B_k \ne 0\}$. Note that M is a.s. finite, since $\sum \lambda_k^S = \int_S C(x, x) \, \mathrm{d}x < \infty$.

• simulate a realization M = m (by the inversion method);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Introduction	Definition	Simulation	Parametric models	Inference

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

Let $M = \max\{k \ge 0; B_k \ne 0\}$. Note that M is a.s. finite, since $\sum \lambda_k^S = \int_S C(x, x) \, \mathrm{d}x < \infty$.

- simulate a realization M = m (by the inversion method);
- **2** generate the Bernoulli variables B_1, \ldots, B_{m-1} (these are independent of $\{M = n\}$);

うして ふゆう ふほう ふほう ふしつ

Introduction	Definition	Simulation	Parametric models	Inferenc

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

Let $M = \max\{k \ge 0; B_k \ne 0\}$. Note that M is a.s. finite, since $\sum \lambda_k^S = \int_S C(x, x) \, \mathrm{d}x < \infty$.

- **(**) simulate a realization M = m (by the inversion method);
- **2** generate the Bernoulli variables B_1, \ldots, B_{m-1} (these are independent of $\{M = n\}$);
- (a) simulate the point process $DPP_S(K)$ given B_1, \ldots, B_M and M = m.

うして ふゆう ふほう ふほう ふしつ
Introduction	Definition	Simulation	Parametric models	Inferenc

So simulating X_S is equivalent to simulate $DPP_S(K)$ with

$$K(x,y) = \sum_{k=1}^{\infty} B_k \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S$$

Let $M = \max\{k \ge 0; B_k \ne 0\}$. Note that M is a.s. finite, since $\sum \lambda_k^S = \int_S C(x, x) \, \mathrm{d}x < \infty$.

- **(**) simulate a realization M = m (by the inversion method);
- **2** generate the Bernoulli variables B_1, \ldots, B_{m-1} (these are independent of $\{M = n\}$);
- (a) simulate the point process $DPP_S(K)$ given B_1, \ldots, B_M and M = m.

In step 3, the kernel K becomes a *projection kernel*, and w.l.o.g.

$$K(x,y) = \sum_{k=1}^{n} \phi_k^S(x) \overline{\phi_k^S(y)}$$

where $n = \#\{1 \le k \le M : B_k = 1\}.$

IntroductionDefinitionSimulationParametric modelsInferenceSimulation of determinantal projection processes

・ロト ・ 日 ・ モー・ モー・ うへぐ

Denoting $\boldsymbol{v}(x) = (\phi_1^S(x), \dots, \phi_n^S(x))^T$, we have $K(x, y) = \sum_{k=1}^n \phi_k^S(x) \overline{\phi_k^S(y)} = \boldsymbol{v}(y)^* \boldsymbol{v}(x)$

IntroductionDefinitionSimulationParametric modelsInferenceSimulation of determinantal projection processes

Denoting $\boldsymbol{v}(x) = (\phi_1^S(x), \dots, \phi_n^S(x))^T$, we have

$$K(x,y) = \sum_{k=1}^{\infty} \phi_k^S(x) \overline{\phi_k^S(y)} = \boldsymbol{v}(y)^* \boldsymbol{v}(x)$$

ション ふゆ マ キャット キャット しょう

The point process $DPP_S(K)$ has a.s. *n* points (X_1, \ldots, X_n) that can be simulated by the following Gram-Schmidt procedure:

IntroductionDefinitionSimulationParametric modelsInferenceSimulation of determinantal projection processes

Denoting $\boldsymbol{v}(x) = (\phi_1^S(x), \dots, \phi_n^S(x))^T$, we have

$$K(x,y) = \sum_{k=1}^{n} \phi_k^S(x) \overline{\phi_k^S(y)} = \boldsymbol{v}(y)^* \boldsymbol{v}(x)$$

The point process $DPP_S(K)$ has a.s. *n* points (X_1, \ldots, X_n) that can be simulated by the following Gram-Schmidt procedure:

sample X_n from the distribution with density $p_n(x) = ||\boldsymbol{v}(x)||^2/n$. set $\boldsymbol{e}_1 = \boldsymbol{v}(X_n)/||\boldsymbol{v}(X_n)||$. for i = (n-1) to 1 do sample X_i from the distribution (given X_{i+1}, \ldots, X_n) :

$$p_i(x) = \frac{1}{i} \left[\|\boldsymbol{v}(x)\|^2 - \sum_{j=1}^{n-i} |\boldsymbol{e}_j^* \boldsymbol{v}(x)|^2 \right], \quad x \in S$$

set $\boldsymbol{w}_i = \boldsymbol{v}(X_i) - \sum_{j=1}^{n-i} \left(\boldsymbol{e}_j^* \boldsymbol{v}(X_i) \right) \boldsymbol{e}_j, \ \boldsymbol{e}_{n-i+1} = \boldsymbol{w}_i / \|\boldsymbol{w}_i\|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Simulation of determinantal projection processes

Denoting $\boldsymbol{v}(x) = (\phi_1^S(x), \dots, \phi_n^S(x))^T$, we have

$$K(x,y) = \sum_{k=1}^{\infty} \phi_k^S(x) \overline{\phi_k^S(y)} = \boldsymbol{v}(y)^* \boldsymbol{v}(x)$$

The point process $DPP_S(K)$ has a.s. *n* points (X_1, \ldots, X_n) that can be simulated by the following Gram-Schmidt procedure:

sample X_n from the distribution with density $p_n(x) = ||\boldsymbol{v}(x)||^2/n$. set $\boldsymbol{e}_1 = \boldsymbol{v}(X_n)/||\boldsymbol{v}(X_n)||$. for i = (n-1) to 1 do sample X_i from the distribution (given X_{i+1}, \ldots, X_n) :

$$p_i(x) = \frac{1}{i} \left[\| \boldsymbol{v}(x) \|^2 - \sum_{j=1}^{n-i} |\boldsymbol{e}_j^* \boldsymbol{v}(x)|^2 \right], \quad x \in S$$

t $\boldsymbol{w}_i = \boldsymbol{v}(X_i) - \sum_{j=1}^{n-i} \left(\boldsymbol{e}_j^* \boldsymbol{v}(X_i) \right) \boldsymbol{e}_j, \ \boldsymbol{e}_{n-i+1} = \boldsymbol{w}_i / \| \boldsymbol{w}_i \|$

Theorem

se

 $\{X_1, \ldots, X_n\}$ generated as above has distribution $DPP_S(K)$.

Introduction	Definition	Simulation	Parametric models	Inference
Illustration	of simulation	on algorithm	n	

Example: Let $S = [-1/2, 1/2]^2$ and

$$\phi_k(x) = e^{2\pi i k \cdot x}, \quad k \in \mathbb{Z}^2, \ x \in S,$$

for a set of indices k_1, \ldots, k_n in \mathbb{Z}^2 . So the projection kernel writes

$$K(x,y) = \sum_{j=1}^{n} e^{2\pi i k_j \cdot (x-y)}$$

うして ふゆう ふほう ふほう ふしつ

and $X_S \sim \text{DPP}_S(K)$ is homogeneous and has a.s. *n* points.

Introduction	Definition	Simulation	Parametric models	Inference
Illustration	of simulation	on algorithm	n	

Step 1. The first point is sampled uniformly on S

IntroductionDefinitionSimulationParametric modelsInferenceIllustration of simulation algorithm

Step 3. The next point is sampled w.r.t. the following density :

Illustration of simulation algorithm

etc.

Illustration of simulation algorithm

etc.

IntroductionDefinitionSimulationParametric modelsInferenceIllustration of simulation algorithm

etc.

Illustration of simulation algorithm

etc.

Introduction	Definition	Simulation	Parametric models	Inference

2 Definition, existence and basic properties

3 Simulation

4 Parametric models

Introduction	Definition	Simulation	Parametric models	Inference
Stationary :	models			

We focus on a kernel C of the form

$$C(x,y) = C_0(x-y), \quad x,y \in \mathbb{R}^d.$$

(C1) C_0 is a continuous covariance function Moreover, if $C_0 \in L^2(\mathbb{R}^d)$ we can define its Fourier transform

$$\varphi(x) = \int C_0(t) \mathrm{e}^{-2\pi \mathrm{i}x \cdot t} \,\mathrm{d}t, \quad x \in \mathbb{R}^d.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Definition	Simulation	Parametric models	Inference
Stationary a	models			

We focus on a kernel C of the form

$$C(x,y) = C_0(x-y), \quad x,y \in \mathbb{R}^d.$$

(C1) C_0 is a continuous covariance function Moreover, if $C_0 \in L^2(\mathbb{R}^d)$ we can define its Fourier transform

$$\varphi(x) = \int C_0(t) \mathrm{e}^{-2\pi \mathrm{i} x \cdot t} \,\mathrm{d} t, \quad x \in \mathbb{R}^d.$$

Theorem

Under (C1), if $C_0 \in L^2(\mathbb{R}^d)$, then existence of $DPP(C_0)$ is equivalent to

 $\varphi \leq 1.$

うして ふゆう ふほう ふほう ふしつ

Introduction	Definition	Simulation	Parametric models	Inference
Stationary a	models			

We focus on a kernel C of the form

$$C(x,y) = C_0(x-y), \quad x, y \in \mathbb{R}^d.$$

(C1) C_0 is a continuous covariance function Moreover, if $C_0 \in L^2(\mathbb{R}^d)$ we can define its Fourier transform

$$\varphi(x) = \int C_0(t) \mathrm{e}^{-2\pi \mathrm{i} x \cdot t} \,\mathrm{d} t, \quad x \in \mathbb{R}^d.$$

Theorem

Under (C1), if $C_0 \in L^2(\mathbb{R}^d)$, then existence of $DPP(C_0)$ is equivalent to

$$\varphi \leq 1.$$

To construct parametric families of DPP : Consider parametric families of C_0 and rescale so that $\varphi \leq 1$. \rightarrow This will induce a bound on the parameter space. Several parametric families of covariance function are available, with closed form expressions for their Fourier transform.

• For d = 2, the circular covariance function with range α is given by

$$C_0(x) = \rho \frac{2}{\pi} \left(\arccos(\|x\|/\alpha) - \|x\|/\alpha \sqrt{1 - (\|x\|/\alpha)^2} \right) \mathbf{1}_{\|x\| < \alpha}.$$

 $\mathrm{DPP}(C_0) \text{ exists iff } \varphi \leq 1 \Leftrightarrow \rho \alpha^2 \leq 4/\pi.$

 \Rightarrow Tradeoff between the intensity ρ and the range of repulsion α .

ション ふゆ マ キャット キャット しょう

Several parametric families of covariance function are available, with closed form expressions for their Fourier transform.

• For d = 2, the circular covariance function with range α is given by $C_0(x) = \rho \frac{2}{\pi} \left(\arccos(\|x\|/\alpha) - \|x\|/\alpha \sqrt{1 - (\|x\|/\alpha)^2} \right) \mathbf{1}_{\|x\| < \alpha}.$

 $\text{DPP}(C_0)$ exists iff $\varphi \leq 1 \Leftrightarrow \rho \alpha^2 \leq 4/\pi$.

 $\Rightarrow \text{Tradeoff between the intensity } \rho \text{ and the range of repulsion } \alpha.$ Whittle-Matérn (includes Exponential and Gaussian) :

$$C_0(x) = \rho \frac{2^{1-\nu}}{\Gamma(\nu)} \|x/\alpha\|^{\nu} K_{\nu}(\|x/\alpha\|), \quad x \in \mathbb{R}^d$$

 $\operatorname{DPP}(C_0)$ exists iff $\rho \leq \frac{\Gamma(\nu)}{\Gamma(\nu+d/2)(2\sqrt{\pi}\alpha)^d}$.

(

Several parametric families of covariance function are available, with closed form expressions for their Fourier transform.

• For d = 2, the circular covariance function with range α is given by $C_0(x) = \rho \frac{2}{\pi} \left(\arccos(\|x\|/\alpha) - \|x\|/\alpha \sqrt{1 - (\|x\|/\alpha)^2} \right) \mathbf{1}_{\|x\| < \alpha}.$

 $\text{DPP}(C_0)$ exists iff $\varphi \leq 1 \Leftrightarrow \rho \alpha^2 \leq 4/\pi$.

 $\Rightarrow \text{Tradeoff between the intensity } \rho \text{ and the range of repulsion } \alpha.$ Whittle-Matérn (includes Exponential and Gaussian) :

$$C_0(x) = \rho \frac{2^{1-\nu}}{\Gamma(\nu)} \|x/\alpha\|^{\nu} K_{\nu}(\|x/\alpha\|), \quad x \in \mathbb{R}^d.$$

► < = ► = <>QQ

 $\text{DPP}(C_0)$ exists iff $\rho \leq \frac{\Gamma(\nu)}{\Gamma(\nu+d/2)(2\sqrt{\pi}\alpha)^d}$.

Generalized Cauchy

$$C_0(x) = \frac{\rho}{\left(1 + \|x/\alpha\|^2\right)^{\nu+d/2}}, \quad x \in \mathbb{R}^d.$$

DPP(C₀) exists iff $\rho \le \frac{\Gamma(\nu+d/2)}{\Gamma(\nu)(\sqrt{\pi\alpha})^d}.$

Introduction	Definition	Simulation	Parametric models	Inference

Pair correlation functions of $DPP(C_0)$ for previous models :

In blue : C_0 is the circular covariance function.

In red : C_0 is Whittle-Matérn, for different values of ν

In green : C_0 is generalized Cauchy, for different values of ν The parameter α is chosen such that the range of corr. ≈ 1 .

Introduction	Definition	Simulation	Parametric models	Inference
Spectral ap	proach			

- Specify a parametric class of integrable functions $\varphi_{\theta} : \mathbb{R}^d \to [0, 1]$ (spectral densities).
- This is all we need for having a well-defined DDP.
- Is convenient for simulation and for (approximate) density calculations as seen later.

Introduction	Definition	Simulation	Parametric models	Inference
Spectral ap	proach			

- Specify a parametric class of integrable functions $\varphi_{\theta} : \mathbb{R}^d \to [0, 1]$ (spectral densities).
- This is all we need for having a well-defined DDP.
- Is convenient for simulation and for (approximate) density calculations as seen later.
- Example: *power exponential spectral model*:

$$\varphi_{\rho,\nu,\alpha}(x) = \rho \frac{\Gamma(d/2+1)\nu\alpha^d}{d\pi^{d/2}\Gamma(d/\nu)} \exp\left(-\|\alpha x\|^{\nu}\right)$$

with

$$\rho > 0, \quad \nu > 0, \quad 0 < \alpha < \alpha_{\max}(\rho, \nu) := \left(\frac{2\pi^{d/2}\Gamma(d/\nu + 1)}{\rho\Gamma(d/2)}\right)^{1/d}$$

IntroductionDefinitionSimulationParametric modelsInferencePower exponential spectral model:(isotropic)spectraldensities and pair correlation functions

Approximation of stationary models

Consider a stationary kernel C_0 and $X \sim \text{DPP}(C_0)$.

• The simulation and the density of X_S requires the expansion

$$C_S(x,y) = C_0(y-x) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S,$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

but in general λ_k^S and ϕ_k^S are not expressible on closed form.

Approximation of stationary models

Consider a stationary kernel C_0 and $X \sim \text{DPP}(C_0)$.

• The simulation and the density of X_S requires the expansion

$$C_S(x,y) = C_0(y-x) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S,$$

but in general λ_k^S and ϕ_k^S are not expressible on closed form. • Consider the unit box $S = [-\frac{1}{2}, \frac{1}{2}]^d$ and the Fourier expansion

$$C_0(y-x) = \sum_{k \in \mathbb{Z}^d} c_k e^{2\pi i k \cdot (y-x)}, \quad y-x \in S.$$

The Fourier coefficients are

$$c_k = \int_S C_0(u) \mathrm{e}^{-2\pi \mathrm{i}k \cdot u} \,\mathrm{d}u \approx \int_{\mathbb{R}^d} C_0(u) \mathrm{e}^{-2\pi \mathrm{i}k \cdot u} \,\mathrm{d}u = \varphi(k)$$

which is a good approximation if $C_0(u) \approx 0$ for $|u| > \frac{1}{2}$.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ つへぐ

Approximation of stationary models

Consider a stationary kernel C_0 and $X \sim \text{DPP}(C_0)$.

• The simulation and the density of X_S requires the expansion

$$C_S(x,y) = C_0(y-x) = \sum_{k=1}^{\infty} \lambda_k^S \phi_k^S(x) \overline{\phi_k^S(y)}, \quad (x,y) \in S \times S,$$

but in general λ_k^S and ϕ_k^S are not expressible on closed form. • Consider the unit box $S = [-\frac{1}{2}, \frac{1}{2}]^d$ and the Fourier expansion

$$C_0(y-x) = \sum_{k \in \mathbb{Z}^d} c_k e^{2\pi i k \cdot (y-x)}, \quad y-x \in S.$$

The Fourier coefficients are

$$c_k = \int_S C_0(u) \mathrm{e}^{-2\pi \mathrm{i}k \cdot u} \,\mathrm{d}u \approx \int_{\mathbb{R}^d} C_0(u) \mathrm{e}^{-2\pi \mathrm{i}k \cdot u} \,\mathrm{d}u = \varphi(k)$$

which is a good approximation if $C_0(u) \approx 0$ for $|u| > \frac{1}{2}$.

• Example: For the circular covariance, this is true whenever $\rho > 5$.

The approximation of $DPP(C_0)$ on S is then $DPP_S(C_{app,0})$ with

$$C_{\text{app},0}(x-y) = \sum_{k \in \mathbb{Z}^d} \varphi(k) e^{2\pi i (x-y) \cdot k}, \quad x, y \in S,$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

where φ is the Fourier transform of C_0 .

The approximation of $DPP(C_0)$ on S is then $DPP_S(C_{app,0})$ with

$$C_{\text{app},0}(x-y) = \sum_{k \in \mathbb{Z}^d} \varphi(k) e^{2\pi i (x-y) \cdot k}, \quad x, y \in S,$$

where φ is the Fourier transform of C_0 .

This approximation allows us

- to simulate $DPP(C_0)$ on S;
- to compute the (approximated) density of $DPP(C_0)$ on S.

うして ふゆう ふほう ふほう ふしつ

Introduction	Definition	Simulation	Parametric models	Inference

2 Definition, existence and basic properties

3 Simulation

Consider a stationary and isotropic parametric DPP(C), i.e.

$$C(x,y) = C_0(x-y) = \rho R_\alpha(||x-y||),$$

with $R_{\alpha}(0) = 1$.

The first and second moments are easily deduced:

- The intensity is ρ .
- The pair correlation function is

$$g(x,y) = g_0(||x-y||) = 1 - R_\alpha^2(||x-y||).$$

Ripley's K-function is easily expressible in terms of R_{α} : if d = 2,

$$K_{\alpha}(r) := 2\pi \int_0^r tg_0(t) \, \mathrm{d}t = \pi r^2 - 2\pi \int_0^r t |R_{\alpha}(t)|^2 \, \mathrm{d}t.$$

▲ロト ▲園ト ▲ヨト ▲ヨト 三百一のへで

Introduction	Definition	Simulation	Parametric models	Inference
Inference				

Parameter estimation can be conducted as follows.

- Estimate ρ by #{obs. points}/area of obs. window.
- **2** Estimate α
 - either by **minimum contrast** estimator (MCE):

$$\hat{\alpha} = \operatorname{argmin}_{\alpha} \int_{0}^{r_{\max}} \left| \sqrt{\widehat{K}(r)} - \sqrt{K_{\alpha}(r)} \right|^{2} \mathrm{d}r$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

• or by **maximum likelihood** estimator: given $\hat{\rho}$, the likelihood is deduced from the kernel approximation.

- Solid lines: theoretical pair correlation function
- $\circ\,$ Circles: pair correlation from the approximated kernel

うして ふゆう ふほう ふほう ふしつ

Samples from the Gaussian model on $[0, 1]^2$:

Samples from the exponential model on $[0, 1]^2$:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Introduction	Definition	Simulation	Parametric models	Inference
Estimation	of α from 2	200 realisati	ons	

Gaussian model

Exponential model

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

IntroductionDefinitionSimulationParametric modelsInferenceExample:134Norwegian pinetrees observed in a 56×38 m region

Møller and Waagpetersen (2004): a five parameter multiscale process is fitted using elaborate MCMC MLE methods.

・ロト ・聞ト ・ヨト ・ヨト

Here we fit a more parsimonious DPP models.
Introduction	Definition	Simulation	Parametric models	Inference
First,				
Whi	ttle-Matérn m	nodel;		
Cau	chy model;			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

• Gaussian model: the best fit, but plots of summary statistics indicate a lack of fit.

Introduction	Definition	Simulation	Parametric models	Inference
First,				
Whi	ttle-Matérn m	lodel;		
Cau	chy model;			
- 0		1. 1 <i></i>	h]	

 Gaussian model: the best fit, but plots of summary statistics indicate a lack of fit.

Second,

power exponential spectral model: provides a much better fit, with

$$\hat{\nu} = 10, \quad \hat{\alpha} = 6.36 \approx \alpha_{\max} = 6.77$$

i.e. close to the "most repulsive possible stationary DPP".

ション ふゆ く は く は く む く む く し く

Introduction	Definition	Simulation	Parametric models	Inference
Conclusions				

• DPP's provide flexible parametric models of repulsive point processes.

Introduction	Definition	Simulation	Parametric models	Inference
Conclusions				

- DPP's provide flexible parametric models of repulsive point processes.
- DPP's possess the following appealing properties:
 - Easily simulated.
 - Closed form expressions for the moments.
 - Closed form expression for the density of a DPP on any bounded set.

ション ふゆ マ キャット マックシン

• Inference is feasible, including likelihood inference.

Introduction	Definition	Simulation	Parametric models	Inference
Conclusions				

- DPP's provide flexible parametric models of repulsive point processes.
- DPP's possess the following appealing properties:
 - Easily simulated.
 - Closed form expressions for the moments.
 - Closed form expression for the density of a DPP on any bounded set.
 - Inference is feasible, including likelihood inference.
- \Rightarrow Promising alternative to repulsive Gibbs point processes.

(日) (日) (日) (日) (日) (日) (日) (日)

Introduct	ion	Definition	Simulation	Parametric models	Inference		
References							
	Hough, J Determir <i>Probabili</i>	. B., M. Krishnap nantal processes a ty Surveys 3, 206	our, Y. Peres, and H nd independence. –229.	3. Viràg (2006).			
	Macchi, The coin Advances	O. (1975). cidence approach s in Applied Probe	to stochastic point ability 7, 83–122.	processes.			
	McCullag The perm Advances	gh, P. and J. Møll nanental process. s in Applied Probe	ler (2006). ability 38, 873–888.				
	Scardicch Statistica Euclideau Physical	nio, A., C. Zachar al properties of de n spaces. Review E 79(4).	y, and S. Torquato terminantal point p	(2009). processes in high-dimension	al		
	Shirai, T Random Fermion, <i>Journal</i>	. and Y. Takahash point fields assoc Poisson and bose of Functional And	hi (2003). iated with certain I on point processes. <i>alysis 2</i> , 414–463.	^r redholm determinants. I.			
	Soshniko	v, A. (2000).					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Determinantal random point fields. Russian Math. Surveys 55, 923–975.