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Introduction

� Determinantal point processes (DPP) form a class of
repulsive point processes.

� They were introduced in their general form by O. Macchi
in 1975 to model fermions (i.e. particules with repulsion) in
quantum mechanics.

� Particular cases include the law of the eigenvalues of
certain random matrices (Gaussian Unitary Ensemble,
Ginibre Ensemble,...)

� Most theoretical studies have been published in the 2000’s.

� The statistical aspects have so far been largely unexplored.
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Examples

Poisson DPP
DPP with

stronger repulsion
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Statistical motivation

Do DPP’s constitute a tractable and flexible class of models for
repulsive point processes?

−→ Answer: YES.

In fact:

� DPP’s can be easily simulated.

� There are closed form expressions for the moments.

� There is a closed form expression for the density of a DPP
on any bounded set.

� Inference is feasible, including likelihood inference.

These properties are unusual for Gibbs point processes which
are commonly used to model inhibition (e.g. the Strauss
process).
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Notation

� We view a spatial point process X on Rd as a random
locally finite subset of Rd.

� For any borel set B ⊆ Rd, XB = X ∩B.

� For any integer n > 0, denote ρ(n) the n’th order product
density function of X.
Intuitively,

ρ(n)(x1, . . . , xn) dx1 · · · dxn
is the probability that for each i = 1, . . . , n,
X has a point in a region around xi of volume dxi.

In particular ρ = ρ(1) is the intensity function.
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Definition of a determinantal point process

For any function C : Rd × Rd → C, denote [C](x1, . . . , xn) the
n× n matrix with entries C(xi, xj).

Ex.: [C](x1) = C(x1, x1) [C](x1, x2) =

(
C(x1, x1) C(x1, x2)
C(x2, x1) C(x2, x2)

)
.

Definition

X is a determinantal point process with kernel C, denoted
X ∼ DPP(C), if its product density functions satisfy

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), n = 1, 2, . . .

The Poisson process with intensity ρ(x) is the special case
where C(x, x) = ρ(x) and C(x, y) = 0 if x 6= y.

For existence, conditions on the kernel C are mandatory,
e.g. C must satisfy: for all x1, . . . , xn, det[C](x1, . . . , xn) ≥ 0.
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First properties

� From the definition, if C is continuous,

ρ(n)(x1, . . . , xn) ≈ 0 whenever xi ≈ xj for some i 6= j,

=⇒ the points of X repel each other.

� The intensity of X is ρ(x) = C(x, x).

� The pair correlation function is

g(x, y) :=
ρ(2)(x, y)

ρ(x)ρ(y)
= 1− C(x, y)C(y, x)

C(x, x)C(y, y)

� Thus g ≤ 1 (i.e. repulsiveness).

� If X ∼ DPP(C), then XB ∼ DPPB(CB)

� Any smooth transformation or independent thinning of a
DPP is still a DPP with explicit given kernel.

� There exists at most one DPP(C).
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Existence

In all that follows we assume

(C1) C is a continuous complex covariance function.

By Mercer’s theorem, for any compact set S ⊂ Rd, C restricted
to S × S, denoted CS , has a spectral representation,

CS(x, y) =
∞∑
k=1

λSkφ
S
k (x)φSk (y), (x, y) ∈ S × S,

where λSk ≥ 0 and
∫
S φ

S
k (x)φSl (x) dx = 1{k=l}.

Theorem (Macchi, 1975; Hough et al., 2009; our paper)

Under (C1), existence of DPP(C) is equivalent to that

λSk ≤ 1 for all compact S ⊂ Rd and all k.
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Density on a compact set S

Let XS ∼ DPPS(CS) with S ⊂ Rd compact.

Recall that CS(x, y) =
∑∞

k=1 λ
S
kφ

S
k (x)φSk (y).

Theorem (Macchi, 1975)

Assuming λSk < 1, for all k, then XS is absolutely continuous
with respect to the homogeneous Poisson process on S with unit
intensity, and has density

f({x1, . . . , xn}) = exp(|S| −D) det[C̃](x1, . . . , xn),

where D = −
∑∞

k=1 log(1− λSk ) and C̃ : S × S → C is given by

C̃(x, y) =
∞∑
k=1

λSk
1− λSk

φSk (x)φSk (y)
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Let XS ∼ DPPS(CS) where S ⊂ Rd is compact.

We want to simulate XS .

Recall that CS(x, y) =
∑∞

k=1 λ
S
kφ

S
k (x)φSk (y).

Theorem (Hough et al., 2006)

For k ∈ N, let Bk be independent Bernoulli r.v.’s with means
λSk . Define

K(x, y) =
∞∑
k=1

Bkφ
S
k (x)φSk (y), (x, y) ∈ S × S.

Then DPPS(CS)
d
= DPPS(K).
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So simulating XS is equivalent to simulate DPPS(K) with

K(x, y) =

∞∑
k=1

Bkφ
S
k (x)φSk (y), (x, y) ∈ S × S.

Let M = max{k ≥ 0;Bk 6= 0}.
Note that M is a.s. finite, since

∑
λSk =

∫
S C(x, x) dx <∞.

1 simulate a realization M = m (by the inversion method);

2 generate the Bernoulli variables B1, . . . , Bm−1 (these are
independent of {M = n});

3 simulate the point process DPPS(K) given B1, . . . , BM and
M = m.

In step 3, the kernel K becomes a projection kernel, and w.l.o.g.

K(x, y) =
n∑
k=1

φSk (x)φSk (y)

where n = #{1 ≤ k ≤M : Bk = 1}.
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Simulation of determinantal projection processes

Denoting v(x) = (φS1 (x), . . . , φSn(x))T , we have

K(x, y) =

n∑
k=1

φSk (x)φSk (y) = v(y)∗v(x)

The point process DPPS(K) has a.s. n points (X1, . . . , Xn) that can
be simulated by the following Gram-Schmidt procedure:

sample Xn from the distribution with density pn(x) = ‖v(x)‖2/n.
set e1 = v(Xn)/‖v(Xn)‖.
for i = (n− 1) to 1 do

sample Xi from the distribution (given Xi+1, . . . , Xn) :

pi(x) =
1

i

‖v(x)‖2 −
n−i∑
j=1

|e∗jv(x)|2
 , x ∈ S

set wi = v(Xi)−
∑n−i
j=1

(
e∗jv(Xi)

)
ej , en−i+1 = wi/‖wi‖

Theorem

{X1, . . . , Xn} generated as above has distribution DPPS(K).
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Illustration of simulation algorithm

Example: Let S = [−1/2, 1/2]2 and

φk(x) = e2πik·x, k ∈ Z2, x ∈ S,

for a set of indices k1, . . . , kn in Z2.
So the projection kernel writes

K(x, y) =

n∑
j=1

e2πikj ·(x−y)

and XS ∼ DPPS(K) is homogeneous and has a.s. n points.
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Illustration of simulation algorithm

Step 1. The first point is sampled uniformly on S
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Illustration of simulation algorithm

Step 1. The first point is sampled uniformly on S
Step 2. The next point is sampled w.r.t. the following density :
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Illustration of simulation algorithm
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Stationary models

We focus on a kernel C of the form

C(x, y) = C0(x− y), x, y ∈ Rd.

(C1) C0 is a continuous covariance function
Moreover, if C0 ∈ L2(Rd) we can define its Fourier transform

ϕ(x) =

∫
C0(t)e−2πix·t dt, x ∈ Rd.

Theorem

Under (C1), if C0 ∈ L2(Rd), then existence of DPP(C0) is
equivalent to

ϕ ≤ 1.

To construct parametric families of DPP :
Consider parametric families of C0 and rescale so that ϕ ≤ 1.
→ This will induce a bound on the parameter space.
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Several parametric families of covariance function are available, with
closed form expressions for their Fourier transform.

� For d = 2, the circular covariance function with range α is given by

C0(x) = ρ
2

π

(
arccos(‖x‖/α)− ‖x‖/α

√
1− (‖x‖/α)2

)
1‖x‖<α.

DPP(C0) exists iff ϕ ≤ 1⇔ ρα2 ≤ 4/π.

⇒ Tradeoff between the intensity ρ and the range of repulsion α.

� Whittle-Matérn (includes Exponential and Gaussian) :

C0(x) = ρ
21−ν

Γ(ν)
‖x/α‖νKν(‖x/α‖), x ∈ Rd.

DPP(C0) exists iff ρ ≤ Γ(ν)
Γ(ν+d/2)(2

√
πα)d

.

� Generalized Cauchy

C0(x) =
ρ

(1 + ‖x/α‖2)
ν+d/2

, x ∈ Rd.

DPP(C0) exists iff ρ ≤ Γ(ν+d/2)
Γ(ν)(

√
πα)d

.
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Pair correlation functions of DPP(C0) for previous models :

In blue : C0 is the circular covariance function.

In red : C0 is Whittle-Matérn, for different values of ν

In green : C0 is generalized Cauchy, for different values of ν

The parameter α is chosen such that the range of corr. ≈ 1.
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Spectral approach

� Specify a parametric class of integrable functions
ϕθ : Rd → [0, 1] (spectral densities).

� This is all we need for having a well-defined DDP.

� Is convenient for simulation and for (approximate) density
calculations as seen later.

� Example: power exponential spectral model:

ϕρ,ν,α(x) = ρ
Γ(d/2 + 1)ναd

dπd/2Γ(d/ν)
exp (−‖αx‖ν)

with

ρ > 0, ν > 0, 0 < α < αmax(ρ, ν) :=

(
2πd/2Γ(d/ν + 1)

ρΓ(d/2)

)1/d

.
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Power exponential spectral model: (isotropic) spectral
densities and pair correlation functions
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Approximation of stationary models

Consider a stationary kernel C0 and X ∼ DPP(C0).
• The simulation and the density of XS requires the expansion

CS(x, y) = C0(y − x) =

∞∑
k=1

λSkφ
S
k (x)φSk (y), (x, y) ∈ S × S,

but in general λSk and φSk are not expressible on closed form.

• Consider the unit box S = [− 1
2 ,

1
2 ]d and the Fourier expansion

C0(y − x) =
∑
k∈Zd

cke2πik·(y−x), y − x ∈ S.

The Fourier coefficients are

ck =

∫
S

C0(u)e−2πik·u du ≈
∫
Rd

C0(u)e−2πik·u du = ϕ(k)

which is a good approximation if C0(u) ≈ 0 for |u| > 1
2 .

• Example: For the circular covariance, this is true whenever ρ > 5.
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Approximation of stationary models

The approximation of DPP(C0) on S is then DPPS(Capp,0) with

Capp,0(x− y) =
∑
k∈Zd

ϕ(k)e2πi(x−y)·k, x, y ∈ S,

where ϕ is the Fourier transform of C0.

This approximation allows us

� to simulate DPP(C0) on S;

� to compute the (approximated) density of DPP(C0) on S.
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Consider a stationary and isotropic parametric DPP(C), i.e.

C(x, y) = C0(x− y) = ρRα(‖x− y‖),

with Rα(0) = 1.

The first and second moments are easily deduced:

� The intensity is ρ.

� The pair correlation function is

g(x, y) = g0(‖x− y‖) = 1−R2
α(‖x− y‖).

� Ripley’s K-function is easily expressible in terms of Rα: if
d = 2,

Kα(r) := 2π

∫ r

0
tg0(t) dt = πr2 − 2π

∫ r

0
t|Rα(t)|2 dt.
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Inference

Parameter estimation can be conducted as follows.

1 Estimate ρ by #{obs. points}/area of obs. window.
2 Estimate α

either by minimum contrast estimator (MCE):

α̂ = argminα

∫ rmax

0

∣∣∣∣√K̂(r)−
√
Kα(r)

∣∣∣∣2 dr

or by maximum likelihood estimator: given ρ̂, the
likelihood is deduced from the kernel approximation.
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Two model examples

� Exponential model with ρ = 200
and α = 0.014:

C0(x) = ρ exp(−‖x‖/α).

� Gaussian model with
ρ = 200 and α = 0.02:

C0(x) = ρ exp(−‖x/α‖2).
0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Exponential model
Gaussian model

− Solid lines: theoretical pair correlation function

◦ Circles: pair correlation from the approximated kernel
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Samples from the Gaussian model on [0, 1]2:
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Estimation of α from 200 realisations
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Example: 134 Norwegian pine trees observed in a
56× 38 m region
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Møller and Waagpetersen (2004): a five parameter multiscale
process is fitted using elaborate MCMC MLE methods.

Here we fit a more parsimonious DPP models.
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First,

� Whittle-Matérn model;

� Cauchy model;

� Gaussian model: the best fit, but plots of summary
statistics indicate a lack of fit.

Second,

� power exponential spectral model: provides a much better
fit, with

ν̂ = 10, α̂ = 6.36 ≈ αmax = 6.77

i.e. close to the “most repulsive possible stationary DPP”.



Introduction Definition Simulation Parametric models Inference

First,

� Whittle-Matérn model;

� Cauchy model;

� Gaussian model: the best fit, but plots of summary
statistics indicate a lack of fit.

Second,

� power exponential spectral model: provides a much better
fit, with

ν̂ = 10, α̂ = 6.36 ≈ αmax = 6.77

i.e. close to the “most repulsive possible stationary DPP”.



Introduction Definition Simulation Parametric models Inference

0 2 4 6 8

−
1.

2
−

0.
8

−
0.

4
0.

0

Gauss
Power exp.
Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

Gauss
Power exp.
Data

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8 Gauss

Power exp.
Data

0.0 0.5 1.0 1.5 2.0 2.5

1
2

3
4

Gauss
Power exp.
Data
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left: L(r)− r; G(r); F (r); J(r). Simulated 2.5% and 97.5%
envelopes are based on 4000 realizations of the fitted Gaussian
model resp. power exponential spectral model.
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Conclusions

• DPP’s provide flexible parametric models of repulsive point
processes.

• DPP’s possess the following appealing properties:

� Easily simulated.

� Closed form expressions for the moments.

� Closed form expression for the density of a DPP on any
bounded set.

� Inference is feasible, including likelihood inference.

⇒ Promising alternative to repulsive Gibbs point processes.
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