A reinforcement learning algorithm for sampling design in Markov random fields

Mathieu BONNEAU Nathalie PEYRARD Régis SABBADIN

INRA-MIA Toulouse E-Mail: {mbonneau,peyrard,sabbadin}@toulouse.inra.fr

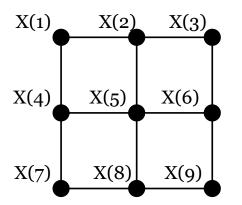
SSIAB, Avignon, 9 mai 2012

Plan

- 1. Problem statement.
- 2. General Approach.
- 3. Formulation using dynamic model.
- 4. Reinforcement learning solution.
- 5. Experiments.
- 6. Conclusions.

PROBLEM STATEMENT

Adaptive sampling in Markov random fields



 Adaptive selection of variables to observe for reconstruction of the random vector
 X=(X(1),...,X(n))

• c(A) -> Cost of observing variables X(A)

• B -> Initial budget

•Observations are reliable

PROBLEM STATEMENT

Adaptive sampling in Markov random fields

- Adaptive selection of variables to observe for reconstruction of the random vector X = (X(1),...,X(n))
- c(A,x(A)) -> Cost of observing variables X(A) in state x(A)

•Observations are reliable

Initial budget • B

Problem: Find strategy / sampling policy to adaptively select variables to observe in order to:

Optimize Quality of the reconstruction of X / Respect Initial Budget

PROBLEM STATEMENT

Adaptive sampling in Markov random fields

- Adaptive selection of variables to observe for reconstruction of the random vector $\mathbf{X} = (X(1),...,X(n))$

- variables
- c(A,x(A)) -> Cost of observing X(A) in state x(A)

•Observations are reliable

- B
- Initial budget

Problem: Find strategies / sampling policy to adaptively select variables to observed in order to:

Optimize Quality of the reconstructed vector X / Respect Initial Budget

DEFINITION: Adaptive sampling policy

For any sampling plans $A^1,...,A^t$ and observations $x(A^1),...,x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

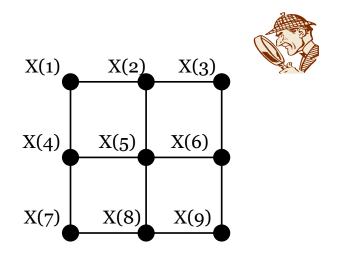
$$\delta((A^1,x(A^1)),...,(A^t,x(A^t)))=A^{t+1}.$$

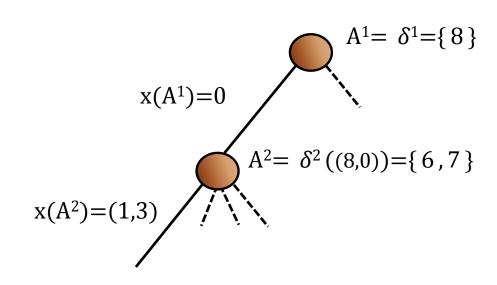
DEFINITION: Adaptive sampling policy

For any sampling plans $A^1,...,A^t$ and observations $x(A^1),...,x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

$$\delta((A^1,x(A^1)),...,(A^t,x(A^t)))=A^{t+1}.$$

-- Example --





DEFINITIONS

For any sampling plans $A^1,...,A^t$ and observations $x(A^1),...,x(A^t)$, an adaptive sampling policy δ is a function giving the next variable(s) to observe:

$$\delta((A^1,x(A^1)),...,(A^t,x(A^t)))=A^{t+1}.$$

•Vocabulary:

- •A history $\{(A^1, x(A^1)), ..., (A^H, x(A^H))\}$ is a trajectory followed when applying δ
- τ_{δ} : set of all reachable histories of δ
- $x(A^1) = 0$

• $c(\delta) \le B \Leftrightarrow cost of any history respects$ the initial budget

GENERAL APPROACH

GENERAL APPROACH

1. Find a distribution \mathbb{P} that well describes the phenomenon under study.

2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A,x(A))\in\tau_{\delta}} \mathbb{P}(x(A)) U(A,x(A))$$

3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg\max_{\delta, c(\delta) \le B} V(\delta)$$

STATE OF THE ART

- 1. Find a distribution \mathbb{P} that well describes the phenomenon under study.
 - > X continuous random vector
 - \triangleright \mathbb{P} multivariate Gaussian joint distribution
- 2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A,x(A)) \in \tau_{\delta}} \mathbb{P}\big(x(A)\big) \textcolor{red}{U}\big(A,x(A)\big)$$

- > Entropy based criterion
- ➤ Kriging variance
- 3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg\max_{\delta, c(\delta) \le B} V(\delta)$$

➤ Greedy algorithm

OUR CONTRIBUTION

- 1. Find a distribution \mathbb{P} that well desribed the phenomenon under study.
 - X continuous random vectorX discrete random vector
- - distribution
 - ▶ ℙ multivariate Gaussian joint
 ▶ ℙ Markov random field distribution
- 2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A, x(A)) \in \tau_{\delta}} \mathbb{P} \big(x(A) \big) \underline{\boldsymbol{U}} \big(A, x(A) \big)$$

- ➤ Entropy based criterions
- ➤ Maximum Posterior Marginals (MPM)

- >Kriging variance
- 3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg\max_{\delta, c(\delta) \le B} V(\delta)$$

>Greedy algorithm

> Reinforcement learning

OUR CONTRIBUTION

- 1. Find a distribution \mathbb{P} that well desribed the phenomenon under study.
 - X continuous random vectorX discrete random vector
 - distribution
 - ▶ ℙ multivariate Gaussian joint
 ▶ ℙ Markov random field distribution
- 2. Define the value of adaptive sampling policy:

$$V(\delta) = \sum_{(A,x(A)) \in \tau_{\delta}} \mathbb{P}\big(x(A)\big) \textcolor{red}{U}\big(A,x(A)\big)$$

- ➤ Entropy based criterions
- ➤ Maximum Posterior Marginals (MPM)

- >Kriging variance
- 3. Define approximate resolution method for finding near optimal policy:

$$\delta^* = \arg\max_{\delta, c(\delta) \le B} V(\delta)$$

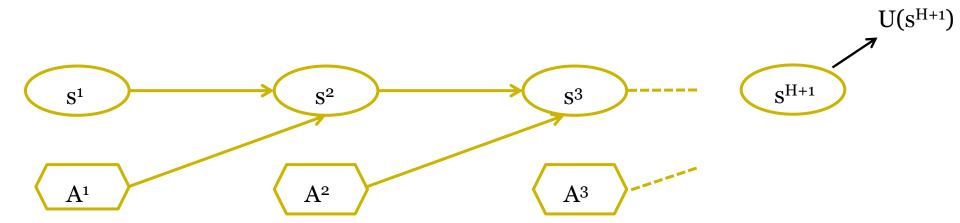
>Greedy algorithm

> Reinforcement learning

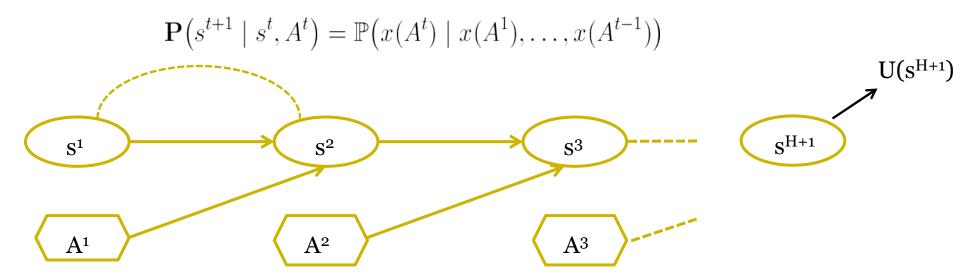
Formulation using dynamic model

An adapted framework for reinforcement learning

- > Summarize knowledge on X in a random vector S of length n
- •Observe variables \rightarrow update our knowledge on $X \rightarrow$ Evolution of S
- •<u>Example:</u> $s = (-1,, k,, -1) \longrightarrow Variable X(i) was observed in state k$



- ➤ Summarize knowledge on **X** in a random vector S of length n
- •Observe variables \rightarrow update our knowledge on $X \rightarrow$ Evolution of S
- •<u>Example:</u> $s = (-1,, k,, -1) \longrightarrow Variable X(i) was observed in state k$



Reinforcement learning solution

Find optimal policy: The Q-function

$$\forall t, \forall s^t, \forall A^t$$

 $\forall t, \forall s^t, \forall A^t$ $Q^*(s^t, A^t)$ = « The expected value of the history when starting in s^t, observing variables X(A^t)and then following policy δ*»

$$= \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1})$$

•
$$\delta^*(s^t) = \arg\max_{A^t} Q^*(s^t, A^t)$$

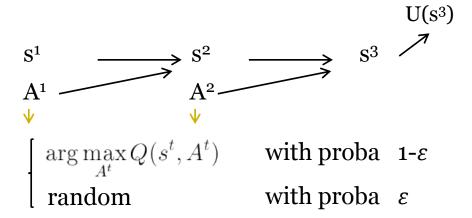
ightharpoonup Compute $Q^* \Leftrightarrow$ Compute δ^*

Find optimal policy: The Q-function

• How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

2. Simulate history



Find optimal policy: The Q-function

• How to compute Q*: classical solution (Q-learning ...)

1. Initialize Q

many times!

Alternative approach

• Linear approximation of Q-function:

$$\forall t = 1 \dots H \qquad \bullet \widetilde{Q}^*(s^t, A^t) = \sum_{i=1}^p w_i \phi_i(s^t, A^t)$$

$$\simeq \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1})$$

$$\bullet \widetilde{Q}^*(s^{H+1}) = Q^*(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

• Choice of function Φ_i:

$$\forall i = 1 \dots n \qquad \phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$
$$= 1 \quad \text{si } i \in A^t$$

LSDP Algorithm

> Define weights for each decision step

➤ Compute weights using "backward induction"

• Linear approximation of Q-function:

$$\forall t = 1 \dots n \qquad \overset{\bullet}{Q}^*(s^t, A^t) = \sum_{i=1}^n \frac{\mathbf{w}_i^t}{\mathbf{w}_i^t} \phi_i(s^t, A^t)$$

$$\simeq \sum_{s^{t+1}} \mathbf{P}(s^{t+1} \mid s^t, A^t) \max_{A^{t+1}} Q^*(s^{t+1}, A^{t+1})$$

$$\overset{\bullet}{Q}^*(s^{H+1}) = Q^*(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

LSDP Algorithm: application to sampling

1. Computation of $\Phi_i(s^t, A^t)$:

$$\phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$

2. Computation of $\mathbf{P}(s^{t+1} \mid s^t, A^t) = \mathbb{P}(x(A^t) \mid x(A^1), \dots, x(A^{t-1}))$

3. Computation of
$$U(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$$

$$= \sum_{i=1}^n \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^H))$$

LSDP Algorithm: application to sampling

1. Computation of $\Phi_i(s^t, A^t)$:

$$\phi_i(s^t, A^t) = \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^{t-1}))$$

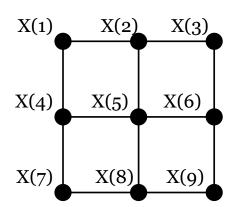
- 2. Computation of $P(s^{t+1} | s^t, A^t) = P(x(A^t) | x(A^1), \dots, x(A^{t-1}))$
- 3. Computation of $U(s^{H+1}) = U((A^1, x(A^1)), \dots, (A^H, x(A^H)))$ $= \sum_{i=1}^n \max_{x(i)} \mathbb{P}(x(i) \mid x(A^1), \dots, x(A^H))$
- We fix $|A^t|=1$ and use the approximation:

$$\mathbb{P}(x(i) \mid x(A^1), \dots, x(A^t)) \simeq \mathbb{P}^{BP}(x(i)) + \left[\sum_{j=1}^t \mathbb{P}^{BP}(x(i) \mid x(A^j)) - \mathbb{P}^{BP}(x(i))\right]$$

Experiments

Experiments

• Regular grid with first order neighbourhood.



•X(i) are **binary** variables.

• \mathbb{P} is a Potts model with $\beta=0.5$

$$\mathbb{P}(x(1),\ldots,x(n)) \propto \exp\left(\sum_{(i,j)\in E} \beta eq(x(i),x(j))\right)$$

• Simple cost: observation of each variale cost 1

Experiments

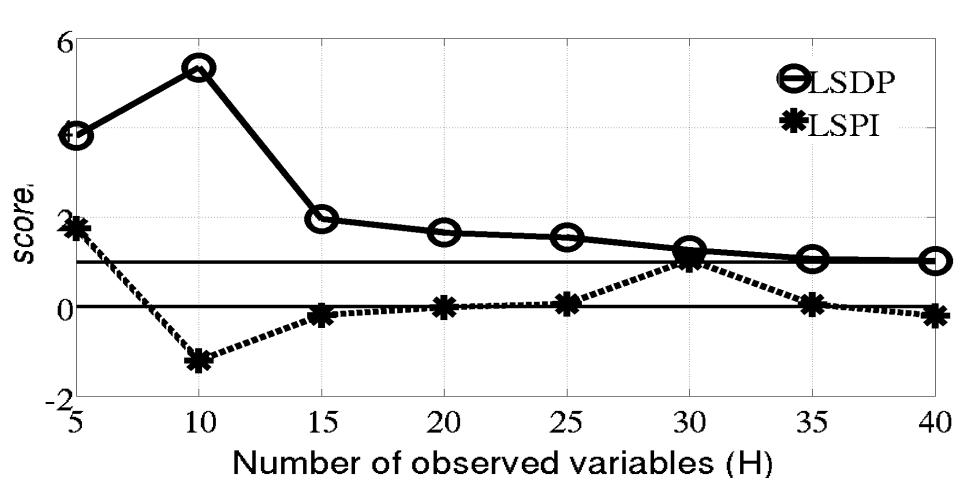
- Comparison between:
 - ➤ Random policy
 - ➤ BP-max heuristic: at each time step observed variable

$$A^{t} = \underset{i=1,\dots,n}{\operatorname{argmin}} \left(\max_{x(i)} \mathbb{P}^{BP}(x(i) \mid x(A^{1}),\dots,x(A^{t-1})) \right)$$

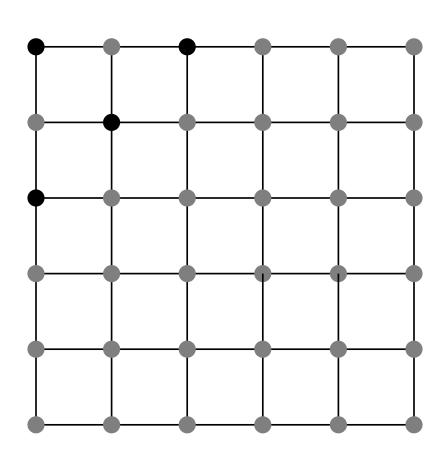
- ➤ LSPI policy "common reinforcement learning algorithm"
- **≻**LSDP policy
- using score:

$$score(\delta) = \frac{\widetilde{V}(\delta) - \widetilde{V}(\delta_R)}{|\widetilde{V}(\delta_{BP-max}) - \widetilde{V}(\delta_R)|}$$

Experiment: 100 variables (n=100)

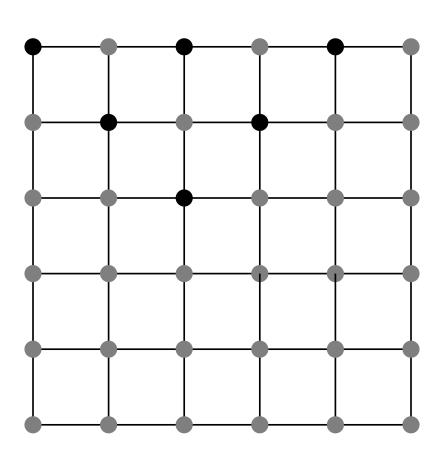


Experiment: 100 variables - constraint move



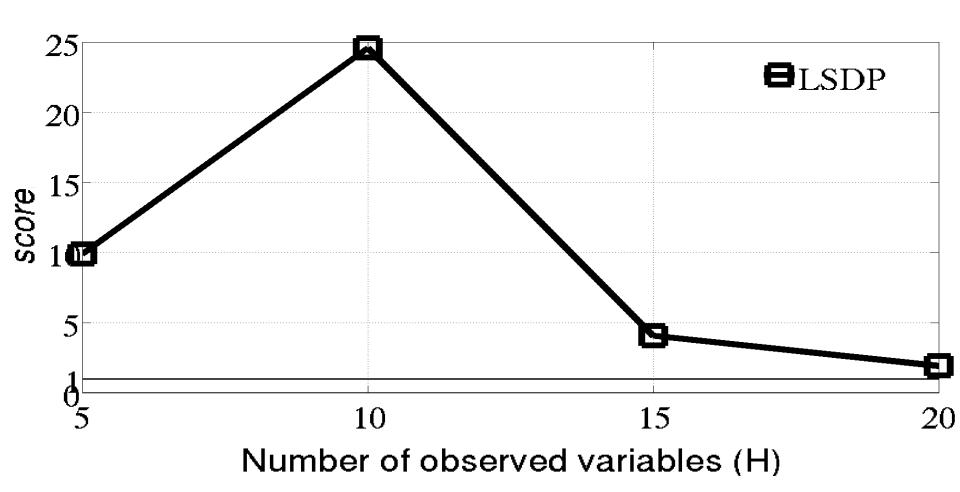
• Allowed to visit second ordre neighbourood only!

Experiment: 100 variables - constraint move



• Allowed to visit second ordre neighbourood only!

Experiment: 100 variables - constraint move

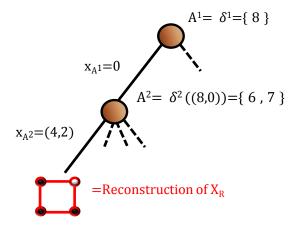


Conclusions

- An adapted framework for adaptive sampling in discrete random variables
- •LSDP: a reinforcement learning approach for finding near optimal policy
 - ➤ Adaptation of common reinforcement learning algorithm for solving adaptive sampling problem
 - ➤ Computation of near optimal policy « off-line »
 - > Design of new policies that outperform simple heuristics and usual RL method
- Possible application?
 - See next presentation!

THANK YOU!

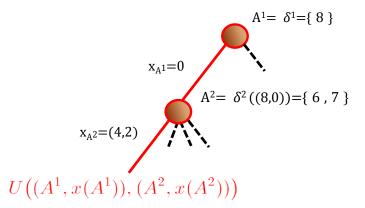
Reconstruction of X(R) and trajectory value



• Maximum Posterior Marginal for reconstruction:

$$\forall r \in R \qquad \widetilde{\boldsymbol{x}}(r) = \arg\max_{\boldsymbol{x}(r)} \mathbb{P}\big(\boldsymbol{x}(r) \mid \boldsymbol{x}(A^1), \dots, \boldsymbol{x}(A^H)\big)$$

Reconstruction of X(R) and trajectory value



Maximum Posterior Marginal for reconstruction:

$$\forall r \in R \qquad \widetilde{x}(r) = \arg\max_{x(r)} \mathbb{P} \big(x(r) \mid x(A^1), \dots, x(A^H) \big)$$

Quality of trajectory:

$$U((A^{1}, x(A^{1})), \dots, (A^{H}, x(A^{H}))) = \sum_{r \in R} \mathbb{P}(\widetilde{x}(r) \mid x(A^{1}), \dots, x(A^{H}))$$
$$= \mathbb{E}_{X^{*}(R)} \left[\sum_{r \in R} eq(x^{*}(r), \widetilde{x}(r)) \mid x(A^{1}), \dots, x(A^{H}) \right]$$