$\begin{array}{c} \mbox{Introduction}\\ G_\beta \mbox{ graphs}\\ \mbox{The rolling Ball Method}\\ \mbox{The main result}\\ \mbox{Proof} \end{array}$

Continuum Percolation in the β skeleton graph

Jean-Michel Billiot, Franck Corset and Eric Fontenas

¹LJK, FIGAL Team Grenoble University

SSIAB, 9 may 2012, Avignon

 $\begin{array}{c} \text{Introduction} \\ G_\beta \text{ graphs} \\ \text{The rolling Ball Method} \\ \text{The main result} \\ \text{Proof} \end{array}$

- 3 The rolling Ball Method
- 4 The main result

(4) (E) (A) (E) (A)

 $\begin{array}{c} \mbox{Introduction} & G_\beta \mbox{ graphs} \\ \mbox{The rolling Ball Method} & \\ \mbox{The main result} & \\ \mbox{Proof} \end{array}$

Continuum percolation result in β skeleton graph for Poisson stationary point process with unit intensity in \mathbb{R}^2 .

伺き くほき くほき

 $\begin{array}{c} \textbf{Introduction}\\ G_\beta \text{ graphs}\\ \textbf{The rolling Ball Method}\\ \textbf{The main result}\\ \textbf{Proof} \end{array}$

Some applications

- Ferromagnetism (at low temperature) and Ising model
- Disordered electrical networks (electrical resistance of a mixture of two materials)
- Cancerology for the study of the growth of tumor when the cancer cells suddently begin to invade healthy tissue.
- Epidemics and fires in orchards

• • • • • • • •

- Meester and Roy [5] for continuum percolation
- Häggström and Meester [4] proposed results for continuum percolation problems for the *k*-nearest neighbor graph under Poisson process
- Bertin et al. [2] proved the result for the Gabriel graph
- Bollobás and Riordan [3] critical probability for random Voronoi percolation in the plane is 1/2.
- Balister and Bollobás [1] gave bounds on *k* for the *k*-nearest neighbor graph for percolation

4 日 ト 4 冊 ト 4 画 ト 4 画 ト

Graphs $G_{\beta} = (V, E, N_{\beta})$

 $(u, v) \in E \Leftrightarrow L_{u,v}(\beta) \cap V = \emptyset$ respectively $C_{u,v}(\beta) \cap V = \emptyset$.

$$L_{u,v}(\beta) = D\left(c_1 = u + \frac{\beta(\alpha)}{2}(v - u), \alpha \frac{\beta(\alpha)}{2}\right)$$
$$\cap D\left(c_2 = v + (u - v)\frac{\beta(\alpha)}{2}, \alpha \frac{\beta(\alpha)}{2}\right)$$
$$C_{u,v}(\beta) = D\left(c_1, \alpha \frac{\beta(\alpha)}{2}\right) \cup D\left(c_2, \alpha \frac{\beta(\alpha)}{2}\right)$$

with $\delta(c_1, u) = \delta(c_1, v) = \delta(c_2, u) = \delta(c_2, v) = \alpha \frac{\beta(\alpha)}{2}$ and $\beta(\alpha) \ge 1$. For $0 < \beta(\alpha) \le 1$:

$$C_{u,v}(\beta) = D\left(c_1, \frac{\alpha}{2\beta(\alpha)}\right) \cap D\left(c_2, \frac{\alpha}{2\beta(\alpha)}\right)$$

э

ヘロト 人間 とくほ とくほとう

æ

1-independent percolation

To prove that continuous percolation occurs, we shall compare the process to various bond percolation models on \mathbb{Z}^2 . In these models, the states of the edges are not be independent.

Definition

A bond percolation model is 1-independent if whenever E_1 and E_2 are sets of edges at graph distance at least 1 from each another (i.e., if no edge of E_1 is incident to an edge of E_2) then the state of the edges in E_1 is independent of the state of the edges in E_2 .

1-independent percolation

To prove that continuous percolation occurs, we shall compare the process to various bond percolation models on \mathbb{Z}^2 . In these models, the states of the edges are not be independent.

Definition

A bond percolation model is 1-independent if whenever E_1 and E_2 are sets of edges at graph distance at least 1 from each another (i.e., if no edge of E_1 is incident to an edge of E_2) then the state of the edges in E_1 is independent of the state of the edges in E_2 .

The Rolling Ball Method

Image: A Image: A

Comparison with $\mathbb{Z}^{2^{1}}$

- Write $u \sim v$ if uv is an edge of the underlying graph
- Percolation = infinite path : a sequence $u_1, u_2 \dots$ with $u_i \sim u_{i+1}$ for all *i*.
- Let *E*_{S1,S2} be the event that every vertex *u*₁ in the central disk *C*₁ of *S*₁ is joined to at least one vertex *v* in the central disk *C*₂ of *S*₂ by a *G*_β- path, regardless of the state of the Poisson process outside of *S*₁ and *S*₂.
- Each vertex $(i,j) \in \mathbb{Z}^2$ corresponds to a square $[Ri, R(i+1)] \times [Rj, R(j+1)] \in \mathbb{R}^2$, where R = 2r + 2q, and an edge is open between adjacent vertices (corresponding to squares S_1 and S_2) if both events \mathcal{E}_{S_1,S_2} and \mathcal{E}_{S_2,S_1} hold.
- 1-independent model on \mathbb{Z}^2 since the event \mathcal{E}_{S_1,S_2} depends only on the Poisson process within the region S_1 and S_2 .

Comparison with $\mathbb{Z}^{2^{l}}$

- Any open path in \mathbb{Z}^2 corresponds to a sequence of events $\mathcal{E}_{S_1,S_2}, \mathcal{E}_{S_2,S_3}...$ that occur, where S_i is the square associated with a site in \mathbb{Z}^2 .
- Every vertex u₁ of the original Poisson process that lies in the central disk C₁ of S₁ now has an infinite path leading away from it, since one can find points uᵢ in the central disk of Sᵢ and paths from uᵢ-1 to uᵢ inductively for every i ≥ 1.
- One can choose r, q and β so that the probability that the intersection of these events is large and then we will apply the theorem of Balister, Bollobas and Walters.

- ロト - (四ト - 三ト - 三ト

A result of a 1-independent bond percolation on \mathbb{Z}^2

Theorem (Balister, Bollobas, Walters. *Random Structures and Algorithms*, 2005)

If every edge in a 1-independent bond percolation model on \mathbb{Z}^2 is open with probability at least 0.8639, then almost surely there is an infinite open component. Moreover, for any bounded region, there is almost surely a cycle of open edges surrounding this region.

 $\begin{array}{c} \text{Introduction} \\ G_\beta \text{ graphs} \\ \text{The rolling Ball Method} \\ \textbf{The main result} \\ \text{Proof} \end{array}$

The main result

Let E_{S_1,S_2} be the event that for every point $v \in C_1 \cup L$, there is a *u* such that :

a) $v \sim u$;

b) $d(u, v) \leq s$; and

c) $u \in D_v$, where D_v is the disk of radius *r* inside $C_1 \cup L \cup C_2$ with *v* on its C_1 -side boundary (the dotted disk in Figure 1).

If E_{S_1,S_2} holds, then every vertex v in C_1 must be joined by a G_β -path to a vertex in C_2 , since each vertex in $C_1 \cup L$ is joined to a vertex whose disk D_v is further along in $C_1 \cup L \cup C_2$.

伺下 イヨト イヨト

The main result

$$E_{S_1,S_2} = \{ \varphi \in \Omega / \forall v \in \varphi_{C_1 \cup L}, \exists u \in \varphi_{D_v \cap D(v,s)}, (\varphi - \delta_v - \delta_u) (N_\beta(uv)) = 0 \}$$
$$A_1 = \{ \varphi \in \Omega / \varphi(D_0) > 0 \}$$
$$A = E_{S_1,S_2} \cap E_{S_2,S_1} \cap A_1$$

Theorem

We can find s, r and β , function of the length of edges, so that $p(\bar{A}) \leq 0.1361$.

イロト イポト イヨト イヨト

 $\begin{array}{c} \text{Introduction} \\ G_\beta \text{ graphs} \\ \text{The rolling Ball Method} \\ \text{The main result} \\ \textbf{Proof} \end{array}$

$$\begin{split} \bar{E}_{S_1,S_2} \cup \bar{A}_1 \subset \bar{A}_1 \cup A_2 \cup A_3 \\ A_2 &= \{\varphi \in \Omega/\exists v \in \varphi_{c_1 \cup L}, \ (\varphi - \delta_v)(D_v \cap D(v,s)) = 0\}. \\ A_3 &= \{\varphi \in \Omega/\exists v \in \varphi_{c_1 \cup L}, \ \forall u \in \varphi_{D_v \cap D(v,s)}, \ (\varphi - \delta_v - \delta_u)(N_\beta(uv)) > 0\}. \\ P(\bar{A}_1) &= e^{-\pi r^2}. \text{ Using Campbell's theorem and Slyvnyak's theorem :} \\ \text{Given } A_{D_v} &= \{\varphi \in \Omega/\varphi(D_v \cap D(v,s)) = 0\} \text{ and} \\ A_{D_0} &= \{\varphi \in \Omega/\varphi(D_O \cap D(O,s)) = 0\}, \text{ it comes} \\ \mathbbm{1}_{A_2}(\varphi) \leq \sum_{v \in \varphi} \mathbbm{1}_{[C_1 \cup L]}(v) \mathbbm{1}_{A_{D_v}}(\varphi - \delta_v). \end{split}$$

 $P(A_2) \le |C_1 \cup L| P_O^!(A_{D_0}) = |C_1 \cup L| P(A_{D_0}) = 2r(2r+2s)e^{-|D_O \cap D(O,s)|}$

For the last probability, by introducing the following events

$$\begin{split} A_{\nu} &= \{\varphi \in \Omega / \forall u \in \varphi_{D_{\nu} \cap D(\nu,s)}, \ (\varphi - \delta_{u})(N_{\beta}(u\nu)) > 0\} \\ A_{O} &= \{\varphi \in \Omega / \forall u \in \varphi_{D_{O} \cap D(O,s)}, \ (\varphi - \delta_{u})(N_{\beta}(uO)) > 0\} \\ A_{Ou} &= \{\varphi \in \Omega / \varphi(N_{\beta}(Ou)) > 0\}. \\ 1_{A_{3}}(\varphi) &= \max_{\nu \in \varphi} 1_{[C_{1} \cup L]}(\nu) 1_{A_{\nu}}(\varphi - \delta_{\nu}) \leq \sum_{\nu \in \varphi} 1_{[C_{1} \cup L]}(\nu) 1_{A_{\nu}}(\varphi - \delta_{\nu}). \\ P(A_{3}) &\leq |C_{1} \cup L| P_{O}^{!}(A_{0}) = |C_{1} \cup L| P(A_{O}). \\ 1_{A_{O}}(\varphi) &\leq \sum_{u \in \varphi} 1_{D_{O} \cap D(O,s)}(u) 1_{A_{Ou}}(\varphi - \delta_{u}), \end{split}$$

$$P(A_{O}) \leq \int_{D_{O} \cap D(O,s)} P_{u}^{!}(A_{Ou}) du = \int_{D_{O} \cap D(O,s)} (1 - e^{-|N_{\beta}(Ou)|}) du.$$
$$P(A_{3}) \leq |C_{1} \cup L| \int_{D_{O} \cap D(O,s)} (1 - e^{-|N_{\beta}(Ou)|}) du.$$

 $\begin{array}{c} \text{Introduction} \\ G_\beta \text{ graphs} \\ \text{The rolling Ball Method} \\ \text{The main result} \\ \textbf{Proof} \end{array}$

Lemma

$$P(ar{E}_{S_1,S_2}\cupar{A}_1)\leq e^{-\pi r^2}+2r(2r+2q)e^{-|D_O\cap D(O,s)|}\ +4r(2r+2q)\int_0^slpharccos\left(rac{lpha}{2r}
ight)(1-e^{-|N_eta(lpha)|})\,dlpha.$$

イロト イロト イヨト イヨト

э.

Remark : we choose the best *q* so that every neighborhood of two differents points inside $C_1 \cup L$ stay inside the rectangular zone $S_1 \cup S_2$. We are looking for a function β constant on an interval [0, t] and function of α on the interval [t, s] so that $|N_{\beta}(\alpha)| = |N_{\beta}(t)|$ for all α in [t, s]. We have :

$$P(\bar{E}_{S_1,S_2} \cup \bar{A}_1) \le e^{-\pi r^2} + 2r(2r+2q)e^{-|D_0 \cap D(O,s)|}$$

+ $4r(2r+2q) \int_0^t \alpha \arccos\left(\frac{\alpha}{2r}\right) (1-e^{-|N_\beta(\alpha)|}) d\alpha$
+ $4r(2r+2q) \int_t^s \alpha \arccos\left(\frac{\alpha}{2r}\right) (1-e^{-|N_\beta(t)|}) d\alpha.$

伺い イヨト イヨト

Numerical results

β	N_{eta}	r	S	$a (t = a/100 \times s)$
1 (Gabriel Graph)	$L_{u,v}(1)$	1.437	2.625	1.025
2 (RNG Graph)	$L_{u,v}(2)$	1.491	2.731	0.631
3	$L_{u,v}(3)$	1.515	2.824	0.484
2	$C_{u,v}(2)$	1.6	2.882	0.176
3	$C_{u,v}(3)$	1.7	2.862	0.087
1/2	$C_{u,v}(1/2)$	1.4	2.522	2.71
$0 < \beta \le 0.001$	$C_{u,v}(\beta)$	1.31	2.6	100

□▶★□▶★□▶

э

Balister P. and Bollobás, B.

Percolation in the *k*-nearest neighbor graph. Manuscript, 2008.

Bertin E., Billiot, J.-M. and Drouilhet, R. Continuum Percolation in the Gabriel Graph. Advances in Applied Probability, 34 :689-701, 2002.

Bollobás, B. and Riordan 0.

Percolation.

Cambridge University Press, 2006.

Haggstrom, O. and Meester, R.

Nearest Neighbor and Hard Sphere Models in Continuum Percolation.

Random Structures and Algorithms, 9(3) :295–315, 1996.

Meester, R. and Roy, R.

Continuum Percolation.

Cambridge University Press, 1996.

イロト イポト イヨト イヨト