Continuum Percolation in the β skeleton graph

Jean-Michel Billiot, Franck Corset and Eric Fontenas

${ }^{1}$ LJK, FIGAL Team
Grenoble University

SSIAB, 9 may 2012, Avignon

Outline

(1) Introduction

(2) G_{β} graphs

3 The rolling Ball Method
(4) The main result
(5) Proof

Continuum percolation result in β skeleton graph for Poisson stationary point process with unit intensity in \mathbb{R}^{2}.

Some applications

- Ferromagnetism (at low temperature) and Ising model
- Disordered electrical networks (electrical resistance of a mixture of two materials)
- Cancerology for the study of the growth of tumor when the cancer cells suddently begin to invade healthy tissue.
- Epidemics and fires in orchards

Bibliography

- Meester and Roy [5] for continuum percolation
- Häggström and Meester [4] proposed results for continuum percolation problems for the k-nearest neighbor graph under Poisson process
- Bertin et al. [2] proved the result for the Gabriel graph
- Bollobás and Riordan [3] critical probability for random Voronoi percolation in the plane is $1 / 2$.
- Balister and Bollobás [1] gave bounds on k for the k-nearest neighbor graph for percolation

Graphs $G_{\beta}=\left(V, E, N_{\beta}\right)$

$$
\begin{gathered}
(u, v) \in E \Leftrightarrow L_{u, v}(\beta) \cap V=\emptyset \text { respectively } C_{u, v}(\beta) \cap V \\
L_{u, v}(\beta)=D\left(c_{1}=u+\frac{\beta(\alpha)}{2}(v-u), \alpha \frac{\beta(\alpha)}{2}\right) \\
\cap D\left(c_{2}=v+(u-v) \frac{\beta(\alpha)}{2}, \alpha \frac{\beta(\alpha)}{2}\right) \\
C_{u, v}(\beta)=D\left(c_{1}, \alpha \frac{\beta(\alpha)}{2}\right) \cup D\left(c_{2}, \alpha \frac{\beta(\alpha)}{2}\right)
\end{gathered}
$$

with $\delta\left(c_{1}, u\right)=\delta\left(c_{1}, v\right)=\delta\left(c_{2}, u\right)=\delta\left(c_{2}, v\right)=\alpha \frac{\beta(\alpha)}{2}$ and $\beta(\alpha) \geq 1$.
For $0<\beta(\alpha) \leq 1$:

$$
C_{u, v}(\beta)=D\left(c_{1}, \frac{\alpha}{2 \beta(\alpha)}\right) \cap D\left(c_{2}, \frac{\alpha}{2 \beta(\alpha)}\right)
$$

$L_{u, v}(\beta)$ with $\beta \geq 1$

$C_{u, v}(\beta)$ with $\beta<1$

$C_{u, v}(\beta)$ with $\beta>1$

1-independent percolation

To prove that continuous percolation occurs, we shall compare the process to various bond percolation models on \mathbb{Z}^{2}. In these models, the states of the edges are not be independent.

Definition

A bond percolation model is 1-independent if whenever E_{1} and E_{2} are sets of edges at graph distance at least 1 from each another (i.e., if no edge of E_{1} is incident to an edge of E_{2}) then the state of the edges in E_{1} is independent of the state of the edges in E_{2}.

1-independent percolation

To prove that continuous percolation occurs, we shall compare the process to various bond percolation models on \mathbb{Z}^{2}. In these models, the states of the edges are not be independent.

Definition

A bond percolation model is 1-independent if whenever E_{1} and E_{2} are sets of edges at graph distance at least 1 from each another (i.e., if no edge of E_{1} is incident to an edge of E_{2}) then the state of the edges in E_{1} is independent of the state of the edges in E_{2}.

The Rolling Ball Method

Comparison with \mathbb{Z}^{2}

- Write $u \sim v$ if $u v$ is an edge of the underlying graph
- Percolation $=$ infinite path : a sequence $u_{1}, u_{2} \ldots$ with $u_{i} \sim u_{i+1}$ for all i.
- Let $\mathcal{E}_{S_{1}, S_{2}}$ be the event that every vertex u_{1} in the central disk C_{1} of S_{1} is joined to at least one vertex v in the central disk C_{2} of S_{2} by a G_{β} - path, regardless of the state of the Poisson process outside of S_{1} and S_{2}.
- Each vertex $(i, j) \in \mathbb{Z}^{2}$ corresponds to a square $[R i, R(i+1)] \times[R j, R(j+1)] \in \mathbb{R}^{2}$, where $R=2 r+2 q$, and an edge is open between adjacent vertices (corresponding to squares S_{1} and S_{2}) if both events $\mathcal{E}_{S_{1}, S_{2}}$ and $\mathcal{E}_{S_{2}, S_{1}}$ hold.
- 1-independent model on \mathbb{Z}^{2} since the event $\mathcal{E}_{S_{1}, S_{2}}$ depends only on the Poisson process within the region S_{1} and S_{2}.

Comparison with \mathbb{Z}^{2}

- Any open path in \mathbb{Z}^{2} corresponds to a sequence of events $\mathcal{E}_{S_{1}, S_{2}}, \mathcal{E}_{S_{2}, S_{3}} \ldots$ that occur, where S_{i} is the square associated with a site in \mathbb{Z}^{2}.
- Every vertex u_{1} of the original Poisson process that lies in the central disk C_{1} of S_{1} now has an infinite path leading away from it, since one can find points u_{i} in the central disk of S_{i} and paths from u_{i-1} to u_{i} inductively for every $i \geq 1$.
- One can choose r, q and β so that the probability that the intersection of these events is large and then we will apply the theorem of Balister, Bollobas and Walters.

A result of a 1-independent bond percolation on \mathbb{Z}^{2}

Theorem (Balister, Bollobas, Walters. Random Structures and Algorithms, 2005)

If every edge in a 1-independent bond percolation model on \mathbb{Z}^{2} is open with probability at least 0.8639 , then almost surely there is an infinite open component. Moreover, for any bounded region, there is almost surely a cycle of open edges surrounding this region.

The main result

Let $E_{S_{1}, S_{2}}$ be the event that for every point $v \in C_{1} \cup L$, there is a u such that:
a) $v \sim u$;
b) $d(u, v) \leq s$; and
c) $u \in D_{v}$, where D_{v} is the disk of radius r inside $C_{1} \cup L \cup C_{2}$ with v on its C_{1}-side boundary (the dotted disk in Figure 1).
If $E_{S_{1}, S_{2}}$ holds, then every vertex v in C_{1} must be joined by a G_{β}-path to a vertex in C_{2}, since each vertex in $C_{1} \cup L$ is joined to a vertex whose disk D_{v} is further along in $C_{1} \cup L \cup C_{2}$.

The main result

$$
\begin{gathered}
E_{S_{1}, S_{2}}=\left\{\varphi \in \Omega / \forall v \in \varphi_{C_{1} \cup L}, \exists u \in \varphi_{D_{v} \cap D(v, s)},\left(\varphi-\delta_{v}-\delta_{u}\right)\left(N_{\beta}(u v)\right)=0\right\} \\
A_{1}=\left\{\varphi \in \Omega / \varphi\left(D_{0}\right)>0\right\} \\
A=E_{S_{1}, S_{2}} \cap E_{S_{2}, S_{1}} \cap A_{1}
\end{gathered}
$$

Theorem

We can find s, r and β, function of the length of edges, so that $p(\bar{A}) \leq 0.1361$.

$$
\begin{aligned}
& \qquad \bar{E}_{S_{1}, S_{2}} \cup \bar{A}_{1} \subset \bar{A}_{1} \cup A_{2} \cup A_{3} \\
& A_{2}=\left\{\varphi \in \Omega / \exists v \in \varphi_{C_{1} \cup L},\left(\varphi-\delta_{v}\right)\left(D_{v} \cap D(v, s)\right)=0\right\} . \\
& A_{3}=\left\{\varphi \in \Omega / \exists v \in \varphi_{C_{1} \cup L}, \forall u \in \varphi_{D_{v} \cap D(v, s)},\left(\varphi-\delta_{v}-\delta_{u}\right)\left(N_{\beta}(u v)\right)>0\right\} . \\
& P\left(\bar{A}_{1}\right)=e^{-\pi r^{2}} . \text { Using Campbell's theorem and Slyvnyak’s theorem : } \\
& \text { Given } A_{D_{v}}=\left\{\varphi \in \Omega / \varphi\left(D_{v} \cap D(v, s)\right)=0\right\} \text { and } \\
& A_{D_{0}}=\left\{\varphi \in \Omega / \varphi\left(D_{O} \cap D(O, s)\right)=0\right\} \text {, it comes } \\
& \qquad \mathbb{1}_{A_{2}}(\varphi) \leq \sum_{v \in \varphi} \mathbb{1}_{\left[C_{1} \cup L\right]}(v) \mathbb{1}_{A_{D_{v}}}\left(\varphi-\delta_{v}\right) . \\
& P\left(A_{2}\right) \leq\left|C_{1} \cup L\right| P_{o}^{!}\left(A_{D_{0}}\right)=\left|C_{1} \cup L\right| P\left(A_{D_{0}}\right)=2 r(2 r+2 s) e^{-\left|D_{O} \cap D(O, s)\right|}
\end{aligned}
$$

For the last probability, by introducing the following events

$$
\begin{gathered}
A_{v}=\left\{\varphi \in \Omega / \forall u \in \varphi_{D_{v} \cap D(v, s)},\left(\varphi-\delta_{u}\right)\left(N_{\beta}(u v)\right)>0\right\} \\
A_{O}=\left\{\varphi \in \Omega / \forall u \in \varphi_{D_{O} \cap D(O, s)},\left(\varphi-\delta_{u}\right)\left(N_{\beta}(u O)\right)>0\right\} \\
A_{O u}=\left\{\varphi \in \Omega / \varphi\left(N_{\beta}(O u)\right)>0\right\} . \\
1_{A_{3}}(\varphi)=\max _{v \in \varphi} 1_{\left[C_{1} \cup L\right]}(v) 1_{A_{v}}\left(\varphi-\delta_{v}\right) \leq \sum_{v \in \varphi} 1_{\left[C_{1} \cup L\right]}(v) 1_{A_{v}}\left(\varphi-\delta_{v}\right) . \\
P\left(A_{3}\right) \leq\left|C_{1} \cup L\right| P_{O}^{!}\left(A_{0}\right)=\left|C_{1} \cup L\right| P\left(A_{O}\right) . \\
1_{A_{O}}(\varphi) \leq \sum_{u \in \varphi} 1_{D_{O} \cap D(O, s)}(u) 1_{A_{O u}}\left(\varphi-\delta_{u}\right), \\
P\left(A_{O}\right) \leq \int_{D_{O} \cap D(O, s)} P_{u}^{!}\left(A_{O u}\right) d u=\int_{D_{O} \cap D(O, s)}\left(1-e^{-\left|N_{\beta}(O u)\right|}\right) d u . \\
P\left(A_{3}\right) \leq\left|C_{1} \cup L\right| \int_{D_{O} \cap D(O, s)}\left(1-e^{-\left|N_{\beta}(O u)\right|}\right) d u .
\end{gathered}
$$

Lemma

$$
\begin{aligned}
& P\left(\bar{E}_{S_{1}, S_{2}} \cup \bar{A}_{1}\right) \leq e^{-\pi r^{2}}+2 r(2 r+2 q) e^{-\left|D_{o} \cap D(O, s)\right|} \\
& +4 r(2 r+2 q) \int_{0}^{s} \alpha \arccos \left(\frac{\alpha}{2 r}\right)\left(1-e^{-\left|N_{\beta}(\alpha)\right|}\right) d \alpha .
\end{aligned}
$$

Remark : we choose the best q so that every neighborhood of two differents points inside $C_{1} \cup L$ stay inside the rectangular zone $S_{1} \cup S_{2}$. We are looking for a function β constant on an interval $[0, t]$ and function of α on the interval $[t, s]$ so that $\left|N_{\beta}(\alpha)\right|=\left|N_{\beta}(t)\right|$ for all α in $[t, s]$. We have :

$$
\begin{aligned}
& P\left(\bar{E}_{S_{1}, S_{2}} \cup \bar{A}_{1}\right) \leq e^{-\pi r^{2}}+2 r(2 r+2 q) e^{-\left|D_{O} \cap D(O, s)\right|} \\
& +4 r(2 r+2 q) \int_{0}^{t} \alpha \arccos \left(\frac{\alpha}{2 r}\right)\left(1-e^{-\left|N_{\beta}(\alpha)\right|}\right) d \alpha \\
& +4 r(2 r+2 q) \int_{t}^{s} \alpha \arccos \left(\frac{\alpha}{2 r}\right)\left(1-e^{-\left|N_{\beta}(t)\right|}\right) d \alpha .
\end{aligned}
$$

Numerical results

β	N_{β}	r	s	$a(t=a / 100 \times s)$
1 (Gabriel Graph)	$L_{u, v}(1)$	1.437	2.625	1.025
2 (RNG Graph)	$L_{u, v}(2)$	1.491	2.731	0.631
3	$L_{u, v}(3)$	1.515	2.824	0.484
2	$C_{u, v}(2)$	1.6	2.882	0.176
3	$C_{u, v}(3)$	1.7	2.862	0.087
$1 / 2$	$C_{u, v}(1 / 2)$	1.4	2.522	2.71
$0<\beta \leq 0.001$	$C_{u, v}(\beta)$	1.31	2.6	100

Balister P. and Bollobás, B.
Percolation in the k-nearest neighbor graph.
Manuscript, 2008.Bertin E., Billiot, J.-M. and Drouilhet, R.
Continuum Percolation in the Gabriel Graph.
Advances in Applied Probability, 34 :689-701, 2002.
Bollobás, B. and Riordan 0.
Percolation.
Cambridge University Press, 2006.
Haggstrom, O. and Meester, R.
Nearest Neighbor and Hard Sphere Models in Continuum Percolation.
Random Structures and Algorithms, 9(3) :295-315, 1996.
Tin Meester, R. and Roy, R.
Continuum Percolation.
Cambridge University Press, 1996.

