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Spatiotemporal point processes in propagation models

Object of interest: species spreading using small particles (spores,
pollens, seeds...)

Sources of particles generate a spatially structured rain of particles

! rain of particles → spatial point process

! spatial structure → inhomogeneous intensity of the process



Intensity of the spatial point process formed by the deposit
locations of the particles

The intensity is a convolution between

! the source process (spatial pattern and strengths) and

! a parametric dispersal kernel



Simulation of an epidemics



Dispersal kernel

Dispersal kernel: probability density function of the deposit

location of a particle released at the origin

The shape of the kernel is a major topic in dispersal studies: it
determines

! the propagation speed

! the spatial structure of the population

! the genetic structure of the population



Main characteristics of dispersal kernels:

! long distance dispersal (Minogue, 1989)

! non-monotonicity (Stoyan and Wagner, 2001)

! anisotropy
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Observation of secondary foci (clusters) in real epidemics

Epidemics of yellow rust of wheat in an experimental field (I.
Sache)

t = 1 t = 2

t = 3 t = 4



! Classical justifications for patterns with multiple foci:
! long distance dispersal
! spatial heterogeneity
! super-spreaders (a few individuals which infects many

susceptible individuals)



! Classical justifications for patterns with multiple foci:
! long distance dispersal
! spatial heterogeneity
! super-spreaders (a few individuals which infects many

susceptible individuals)

! An other justification to be investigated: Group dispersal
! Groups of particles are released due to wind gusts
! Particles of any group are transported in an expanding air

volume
! At a given stopping time, particles of any group are projected

to the ground



Group Dispersal Model (GDM): Spatial case

Deposit equation for particles:

A single point source of particles located at the origin of R2

J: number of groups of particles released by the source
Nj : number of particles in group j ∈ {1, . . . , J}
Xjn: deposit location of the nth particle of group j satisfying

Xjn = Xj + Bjn(ν||Xj ||), (1)

where
Xj : final location of the center of group j ,
Bjn: Brownian motion describing the relative movement of the nth
particle in group j with respect to the group center
ν: positive parameter



Assumptions about the deposit equation

! The random variables J, Nj , Xj and the random processes
{Bjn : n = 1, . . . ,Nj} are mutually independent

! Number of groups: J ∼ Poisson(λ)

! Number of particles in group j : Nj ∼indep pµ,σ2(·)
! Group center location: Xj ∼indep fXj

(·)
(features of fXj

: decrease at the origin is more or less steep,
tail more or less heavy, shape more or less anisotropic...)

! The Brownian motions Bjn are centered, independent and
with independent components
They are stopped at time t = ν||Xj ||.
Then,

Bjn(ν||Xj ||) ∼indep N(0, ν||Xj ||I )



Dispersal from a single source

! Simulations: (Interpretation: Cox process or Neyman-Scott
with double nonstationarity — in the center pattern and the
offspring diffusion)
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! Marginal probability density function (dispersal kernel):



Dispersal from a single source

! Simulations: (Interpretation: Cox process or Neyman-Scott
with double nonstationarity — in the center pattern and the
offspring diffusion)
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! Marginal probability density function (dispersal kernel):

fXjn
(x) =

∫

R2
fXjn|Xj

(x | y)fXj
(y)dy =

∫

R2
φν,y(x)fXj

(y)dy .

The particles are n.i.i.d. from this p.d.f. while in the classical
dispersal models the particles are i.i.d. from a dispersal kernel
which may be of the form of fXj

or fXjn



Discrepancies from independent dispersal

The GDM is compared with two independent dispersal models
(IDM)

! IDM1: the number of particles in each group is assumed to be
one. Thus, particles are independently drawn under the p.d.f.
fXjn

.

! IDM2: the number of particles in each group is assumed to be
one and the Brownian motions are deleted (i.e. ν = 0). Thus,
particles are independently drawn under the p.d.f. fXj

.



Moments
X : Deposit location of a particle
Q(x + dx): Count of points in x + dx

Criterion Model Value
E(X ) GDM ( 0

0 )
IDM1 ( 0

0 )
IDM2 ( 0

0 )
V (X ) GDM V (Xj ) + νE(||Xj ||)I

IDM1 V (Xj ) + νE(||Xj ||)I
IDM2 V (Xj )

E(||X ||2) GDM E(||Xj ||
2) + 2νE(||Xj ||)

IDM1 E(||Xj ||
2) + 2νE(||Xj ||)

IDM2 E(||Xj ||
2)

E{Q(x + dx)} GDM λµfXjn
(x)dx

IDM1 λfXjn
(x)dx

IDM2 λfXj
(x)dx

V {Q(x + dx)} GDM λ[µfXjn
(x)dx + (σ2 + µ2 − µ)E{φν,Xj

(x)2}(dx)2]
IDM1 λfXjn

(x)dx
IDM2 λfXj

(x)dx
cov{Q(x1 + dx) GDM λ(σ2 + µ2 − µ)E{φν,Xj

(x1)φν,Xj
(x2)}(dx)

2

,Q(x2 + dx)} IDM1 0
IDM2 0



GDM: larger variance of Q(x + dx) and positive covariance
(decreasing with distance)
→ clusters (even with µ = 1)

We expect multiple foci in the spatio-temporel case



Group dispersal model: Spatio-temporal case

GDM IDM1 IDM2
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→ multiple foci under the GDM



Simulation study of the number of foci:

Definition
A δ-focus is a set of cells (from a regular grid) which are connected
and whose intensity of points is larger than δ
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Farthest particle (link with propagation speed)

Definition
The maximum dispersal distance during one generation is

Rmax = max{Rjn : j ∈ J, n ∈ Nj}

where Rjn = ||Xjn||
J = {1, . . . , J} if J > 0 and the empty set otherwise
Nj = {1, . . . ,Nj} if Nj > 0 and the empty set otherwise

By convention, if no particle is released (J = 0 or Nj = 0 for all j),
then Rmax = 0
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Rmax = max{Rjn : j ∈ J, n ∈ Nj}

Under the GDM and IDMs, the distribution of the distance
between the origin and the furthest deposited propagule is
zero-inflated and satisfies:

P(Rmax = 0) = exp
[

λ{pµ,σ2(0) − 1}
]

fRmax (r) = λfRmax
j

(r) exp{λ(FRmax
j

(r)− 1)}, ∀r > 0,

where fRmax
j

is the p.d.f. of the distance Rmax
j = max{Rjn : n ∈ Nj}

between the origin and the furthest deposited propagule of group j ,
and FRmax

j
is the corresponding cumulative distribution function

(FRmax
j

(r) = P(Rmax
j = 0) +

∫ r
0 fRmax

j
(u)du).

→ Distribution of Rmax
j ?



Under the IDMs, Nj = 1 for all j ∈ J and, consequently,
pµ,σ2(0) = 0 and

fRmax
j

(r) = fRjn
(r)

=

{

∫ 2π
0 rfXjn

((r cos θ, r sin θ))dθ for the IDM1
∫ 2π
0 rfXj

((r cos θ, r sin θ))dθ for the IDM2.



Under the GDM, the distribution of Rmax
j is zero-inflated and

satisfies:

P(Rmax
j = 0) = pµ,σ2(0)

fRmax
j

(r) =

∫

R2
fRmax

j |Xj
(r | x)fXj

(x)dx

=
+∞
∑

q=1

qpµ,σ2(q)

∫

R2
fRjn|Xj

(r | x)FRjn|Xj
(r | x)q−1fXj

(x)dx ,

where fRjn|Xj
is the conditional distribution of Rjn given Xj

satisfying

fRjn|Xj
(r | x) = 2r

∫ r2

0
h1(u, x)h2(r

2 − u, x)du,

hi (u, x) =
fi (

√
u, x) + fi(−

√
u, x)

2
√
u

, ∀i ∈ {1, 2},

fi(v , x) =
1

√

2πν||x ||
exp

(

−
(v − x(i))2

2ν||x ||

)

, ∀i ∈ {1, 2},

x = (x(1), x(2)) and FRjn|Xj
(r | x) =

∫ r
0 fRjn|Xj

(s | x)ds.



Theorem
Consider a GDM and an IDM1 characterized by the same
parameter values except that E (J) = λ̃, E (Nj ) = µ̃ and
V (Nj) = σ2 for the GDM, and E (J) = λ̃µ̃, E (Nj ) = 1 and
V (Nj) = 0 for the IDM1 (⇒ same marginal dispersal kernel).
Then, for all r > 0 the probability P(Rmax ≥ r) is lower for the
GDM than for the IDM1.

Theorem
Consider an IDM1 and an IDM2 characterized by the same
parameter values except that ν > 0 for the IDM1 and ν = 0 for
the IDM2.
Then, for all r > 0 the probability P(Rmax ≥ r) is lower for the
IDM2 than for the IDM1.

Interpretation:
The population of particles are less concentrated in

probability for the IDM1 than for the GDM and the IDM2



E (Rmax):
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Conclusion

! With group dispersal, one can generate multiple foci whereas
the particles are more concentrated



Perspectives

! Toward analytic results about the farthest particle in the
spatio-temporal case
(→ speed of propagation of epidemics)

! Inference (with Tomas Mrkvicka and Eyoub Sidi)

! Alternative representations of group dispersal (Cylinder-based
models, with Tomas Mrkvicka and Antti Penttinen)

! Study of the evolutionary dynamics between group dispersal
and independent dispersal


