Modeling group dispersal of particles with a spatiotemporal point process

Samuel Soubeyrand INRA – Biostatistics and Spatial Processes Joint work with L. Roques, J. Coville and J. Fayard

9th SSIAB Workshop, May 10, 2012

Group Dispersal Project - Plant Health and Environment Dpt.

Spatiotemporal point processes in propagation models

Object of interest: species spreading using small particles (spores, pollens, seeds...)

Sources of particles generate a spatially structured rain of particles

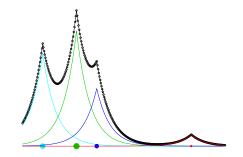
- rain of particles \rightarrow spatial point process
- \blacktriangleright spatial structure \rightarrow inhomogeneous intensity of the process

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Intensity of the spatial point process formed by the deposit locations of the particles

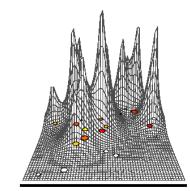
The intensity is a convolution between

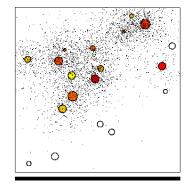
- the source process (spatial pattern and strengths) and
- a parametric dispersal kernel



イロト 不同 トイヨト イヨト

Simulation of an epidemics





ヘロト ヘ部ト ヘヨト ヘヨト

Dispersal kernel: probability density function of the deposit location of a particle released at the origin

The shape of the kernel is a major topic in dispersal studies: it determines

- the propagation speed
- the spatial structure of the population
- the genetic structure of the population

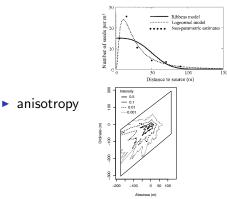
Main characteristics of dispersal kernels:

long distance dispersal (Minogue, 1989)

Noyau exponentiel

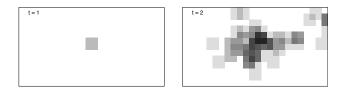
Noyau de Pareto

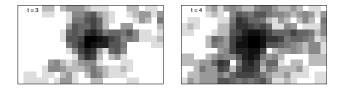
non-monotonicity (Stoyan and Wagner, 2001)



Observation of secondary foci (clusters) in real epidemics

Epidemics of yellow rust of wheat in an experimental field (I. Sache)



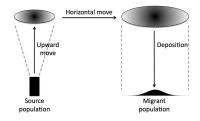


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

- Classical justifications for patterns with multiple foci:
 - long distance dispersal
 - spatial heterogeneity
 - super-spreaders (a few individuals which infects many susceptible individuals)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Classical justifications for patterns with multiple foci:
 - long distance dispersal
 - spatial heterogeneity
 - super-spreaders (a few individuals which infects many susceptible individuals)
- An other justification to be investigated: Group dispersal
 - Groups of particles are released due to wind gusts
 - Particles of any group are transported in an expanding air volume
 - At a given stopping time, particles of any group are projected to the ground



▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Group Dispersal Model (GDM): Spatial case

Deposit equation for particles:

A single point source of particles located at the origin of \mathbb{R}^2 *J*: number of groups of particles released by the source N_j : number of particles in group $j \in \{1, \ldots, J\}$ X_{jn} : deposit location of the *n*th particle of group *j* satisfying

$$X_{jn} = X_j + B_{jn}(\nu ||X_j||),$$
 (1)

where

 X_j : final location of the center of group j,

 B_{jn} : Brownian motion describing the relative movement of the *n*th particle in group *j* with respect to the group center

 ν : positive parameter

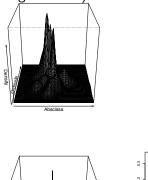
Assumptions about the deposit equation

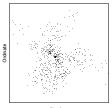
- ► The random variables J, N_j, X_j and the random processes {B_{jn} : n = 1,..., N_j} are mutually independent
- Number of groups: $J \sim Poisson(\lambda)$
- Number of particles in group *j*: $N_j \sim_{indep} p_{\mu,\sigma^2}(\cdot)$
- ▶ Group center location: X_j ~_{indep} f_{X_j}(·) (features of f_{X_j}: decrease at the origin is more or less steep, tail more or less heavy, shape more or less anisotropic...)
- ► The Brownian motions B_{jn} are centered, independent and with independent components They are stopped at time t = v||X_j||. Then,

$$B_{jn}(
u||X_j||) \sim_{indep} N(0,
u||X_j||I)$$

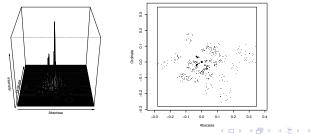
Dispersal from a single source

 Simulations: (Interpretation: Cox process or Neyman-Scott with double nonstationarity — in the center pattern and the offspring diffusion)





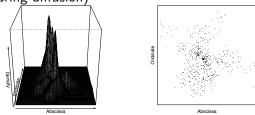
Abscissa



.

Dispersal from a single source

 Simulations: (Interpretation: Cox process or Neyman-Scott with double nonstationarity — in the center pattern and the offspring diffusion)



Marginal probability density function (dispersal kernel):

$$f_{X_{jn}}(x) = \int_{\mathbb{R}^2} f_{X_{jn}|X_j}(x \mid y) f_{X_j}(y) dy = \int_{\mathbb{R}^2} \phi_{\nu,y}(x) f_{X_j}(y) dy.$$

The particles are n.i.i.d. from this p.d.f. while in the classical dispersal models the particles are i.i.d. from a dispersal kernel which may be of the form of f_{X_i} or $f_{X_{in}}$

Discrepancies from independent dispersal

The GDM is compared with two independent dispersal models (IDM)

- ► IDM1: the number of particles in each group is assumed to be one. Thus, particles are independently drawn under the p.d.f. f_{X_{jn}}.
- IDM2: the number of particles in each group is assumed to be one and the Brownian motions are deleted (i.e. ν = 0). Thus, particles are independently drawn under the p.d.f. f_{Xi}.

Moments

 $cov{Q(x_1 + dx)$

 $, Q(x_2 + dx) \}$

X: Deposit location of a particle

Q(x + dx): Cou	unt of po	pints in $x + dx$
Criterion	Model	Value
E(X)	GDM	$\begin{pmatrix} 0\\0 \end{pmatrix}$
	IDM1	$\begin{pmatrix} 0\\0 \end{pmatrix}$
	IDM2	$\begin{pmatrix} 0\\0 \end{pmatrix}$
V(X)	GDM	$V(X_j) + \nu E(X_j)I$
	IDM1	$V(X_j) + u E(X_j)I$
	IDM2	$V(X_j)$
$E(X ^2)$	GDM	$E(X_j ^2) + 2\nu E(X_j)$
	IDM1	$E(X_j ^2) + 2\nu E(X_j)$
	IDM2	$E(X_j ^2)$
$E\{Q(x+dx)\}$	GDM	$\lambda \mu f_{X_{in}}(x) dx$
	IDM1	$\lambda f_{X_{in}}(x) dx$
	IDM2	$\lambda f_{X_i}(x) dx$
$V{Q(x+dx)}$	GDM	$\lambda[\mu f_{X_{in}}(x)dx + (\sigma^2 + \mu^2 - \mu)E\{\phi_{\nu,X_i}(x)^2\}(dx)^2]$
	IDM1	$\lambda f_{X_{in}}(x) dx$
	IDM2	$\lambda f_{X_j}(x) dx$

 $\lambda(\sigma^2 + \mu^2 - \mu) E\{\phi_{\nu, X_j}(x_1)\phi_{\nu, X_j}(x_2)\}(dx)^2$

0

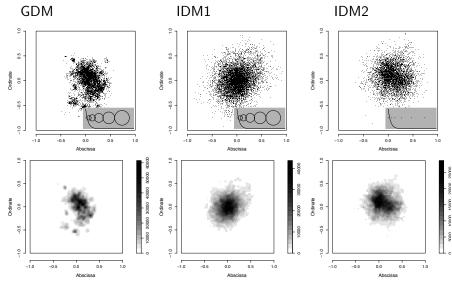
Q(x + dx): Count of points in $x + dx$	
--	--

GDM

IDM1 IDM2 GDM: larger variance of Q(x + dx) and positive covariance (decreasing with distance) \rightarrow clusters (even with $\mu = 1$)

We expect multiple foci in the spatio-temporel case

Group dispersal model: Spatio-temporal case

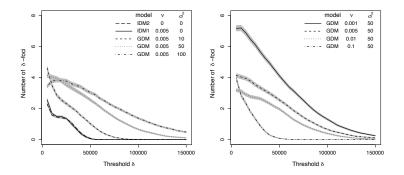


 \rightarrow multiple foci under the GDM

Simulation study of the number of foci:

Definition

A δ -focus is a set of cells (from a regular grid) which are connected and whose intensity of points is larger than δ



▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Farthest particle (link with propagation speed)

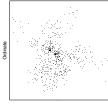
Definition

The maximum dispersal distance during one generation is

$$R^{max} = \max\{R_{jn} : j \in \mathcal{J}, n \in \mathcal{N}_j\}$$

where $R_{jn} = ||X_{jn}||$ $\mathcal{J} = \{1, \dots, J\}$ if J > 0 and the empty set otherwise $\mathcal{N}_j = \{1, \dots, N_j\}$ if $N_j > 0$ and the empty set otherwise

By convention, if no particle is released $(J = 0 \text{ or } N_j = 0 \text{ for all } j)$, then $R^{max} = 0$



Abscissa

$$R^{max} = \max\{R_{jn} : j \in \mathcal{J}, n \in \mathcal{N}_j\}$$

Under the GDM and IDMs, the distribution of the distance between the origin and the furthest deposited propagule is zero-inflated and satisfies:

$$\begin{split} P(R^{max} = 0) &= \exp\left[\lambda\{p_{\mu,\sigma^2}(0) - 1\}\right] \\ f_{R^{max}}(r) &= \lambda f_{R_j^{max}}(r) \exp\{\lambda(F_{R_j^{max}}(r) - 1)\}, \qquad \forall r > 0, \end{split}$$

where $f_{R_j^{max}}$ is the p.d.f. of the distance $R_j^{max} = \max\{R_{jn} : n \in N_j\}$ between the origin and the furthest deposited propagule of group j, and $F_{R_j^{max}}$ is the corresponding cumulative distribution function $(F_{R_j^{max}}(r) = P(R_j^{max} = 0) + \int_0^r f_{R_j^{max}}(u) du).$

 \rightarrow Distribution of R_j^{max} ?

Under the IDMs, $N_j=1$ for all $j\in \mathcal{J}$ and, consequently, $ho_{\mu,\sigma^2}(0)=0$ and

$$\begin{split} f_{R_j^{max}}(r) &= f_{R_{jn}}(r) \\ &= \begin{cases} \int_0^{2\pi} r f_{X_{jn}}((r\cos\theta, r\sin\theta))d\theta & \text{ for the IDM1} \\ \int_0^{2\pi} r f_{X_j}((r\cos\theta, r\sin\theta))d\theta & \text{ for the IDM2.} \end{cases} \end{split}$$

Under the GDM, the distribution of R_j^{max} is zero-inflated and satisfies:

$$\begin{split} \mathcal{P}(R_{j}^{max} = 0) &= p_{\mu,\sigma^{2}}(0) \\ f_{R_{j}^{max}}(r) &= \int_{\mathbb{R}^{2}} f_{R_{j}^{max}|X_{j}}(r \mid x) f_{X_{j}}(x) dx \\ &= \sum_{q=1}^{+\infty} q p_{\mu,\sigma^{2}}(q) \int_{\mathbb{R}^{2}} f_{R_{jn}|X_{j}}(r \mid x) \mathcal{F}_{R_{jn}|X_{j}}(r \mid x)^{q-1} f_{X_{j}}(x) dx, \end{split}$$

where $f_{R_{jn}|X_j}$ is the conditional distribution of R_{jn} given X_j satisfying

$$\begin{split} f_{R_{jn}|X_{j}}(r \mid x) &= 2r \int_{0}^{r^{2}} h_{1}(u, x)h_{2}(r^{2} - u, x)du, \\ h_{i}(u, x) &= \frac{f_{i}(\sqrt{u}, x) + f_{i}(-\sqrt{u}, x)}{2\sqrt{u}}, \quad \forall i \in \{1, 2\}, \\ f_{i}(v, x) &= \frac{1}{\sqrt{2\pi\nu||x||}} \exp\left(-\frac{(v - x^{(i)})^{2}}{2\nu||x||}\right), \quad \forall i \in \{1, 2\}, \\ x &= (x^{(1)}, x^{(2)}) \text{ and } F_{R_{jn}|X_{j}}(r \mid x) = \int_{0}^{r} f_{R_{jn}|X_{j}}(s \mid x) ds. \end{split}$$

Theorem

Consider a GDM and an IDM1 characterized by the same parameter values except that $E(J) = \tilde{\lambda}$, $E(N_j) = \tilde{\mu}$ and $V(N_j) = \sigma^2$ for the GDM, and $E(J) = \tilde{\lambda}\tilde{\mu}$, $E(N_j) = 1$ and $V(N_j) = 0$ for the IDM1 (\Rightarrow same marginal dispersal kernel). Then, for all r > 0 the probability $P(R^{max} \ge r)$ is lower for the GDM than for the IDM1.

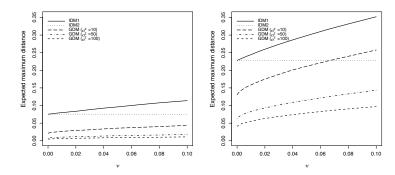
Theorem

Consider an IDM1 and an IDM2 characterized by the same parameter values except that $\nu > 0$ for the IDM1 and $\nu = 0$ for the IDM2.

Then, for all r > 0 the probability $P(R^{max} \ge r)$ is lower for the IDM2 than for the IDM1.

Interpretation:

The population of particles are less concentrated in probability for the IDM1 than for the GDM and the IDM2



 $E(R^{max})$:

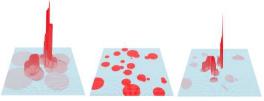
Conclusion

 With group dispersal, one can generate multiple foci whereas the particles are more concentrated

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Perspectives

- Toward analytic results about the farthest particle in the spatio-temporal case (→ speed of propagation of epidemics)
- Inference (with Tomas Mrkvicka and Eyoub Sidi)
- Alternative representations of group dispersal (Cylinder-based models, with Tomas Mrkvicka and Antti Penttinen)



 Study of the evolutionary dynamics between group dispersal and independent dispersal