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Stationary Gibbs point processes on Rd

I We define a point process X in Rd as a locally finite random
subset of Rd , i.e. N(Λ) = n(XΛ) is a finite random variable
whenever Λ ⊂ Rd is a bounded region.

I If the distribution of X is translation invariant, we say that X
is stationary.

I we are interested in stationary Gibbs point processes on Rd

which may be defined through of Papangelou conditional
intensity λ : Rd × Nlf −→ R+.

I The Papangelou conditional intensity has the interpretation
that λ(u, x)du as the probability that the process X has to
send a point in a region of du around a point u which also
respects the existing configuration outside of the du.



Examples Gibbs point processes

I Strauss point process:

λ(u, x) = βγn[0,R](u,x)

where β > 0, γ ∈ [0, 1], n[0,R](u, x) =
∑

v∈xΛ
1(‖v − u‖ ≤ R).

I Strauss point process with Hard-Core:
I If all points are at distance greater than δ from each other

λ(u, x) = βγn[0,R](u,x).

I otherwise λ(u, x) = 0.

I Piecewise Strauss point process:

λ(u, x) = β

p∏
j=1

γ
n[Rj−1,Rj ](u,x)

j

where n[Rj−1,Rj ](u, x) =
∑

v∈xΛ
1(‖v − u‖ ∈ [Rj−1,Rj ]) where

R0 = 0 < R1 < . . . < Rp < +∞.



Position of the problem

We consider Gibbs models such that the Papangelou conditional
intensity can be written for u ∈ Rd and x ∈ Nlf

λ(u, x ;β?) = β? λ̃(u, x),

where

I β? is the ”Poisson intensity” parameter.

I λ̃ is a function from Rd × Nlf to R+.

I [FR] The Papangelou conditional intensity satisfies

λ(u, x ;β?) = λ(u, xB(u,R);β?), for any u ∈ Rd , x ∈ Nlf

and such that λ̃(u, ∅) = 1.
We propose to estimate β? independently of λ̃ based on a
single observation of a stationary Gibbs point process in Rd ,
denoted X , in a domain Λn

⊕
R̃, where (Λn)n≥0 is a sequence

of increasing cubes and R̃ ≥ R and we do not assume R
known, but only know an upper bound R̃.



Definition of the estimator

I For all nonnegative measurable functions h on Rd × Nlf , then

E

[∑
u∈X

h(u,X\u)

]
= E

[∫
Rd

h(u,X )λ(u,X ;β?)du

]
(1)

(where the left hand side is finite if and only if the right hand
side is finite).

I With the choice of h defined by

[CH] : h(u,X ) = 1
(

X ∩ B(u, R̃) = ∅
)
.



E

 ∑
u∈XΛn

h(u,X\u)

 = E


NΛn (X ;R̃)︷ ︸︸ ︷∑

u∈XΛn

1((X\u) ∩ B(u, R̃) = ∅)


= β?E

[∫
Λn

1
(

X ∩ B(u, R̃) = ∅
)
λ̃(u,X )du

]

= β?E

[∫
Λn

1(X ∩ B(u, R̃) = ∅)λ̃(u,XB(u,R))du

]

= β?E

[∫
{u,X∩B(u,R̃)=∅}

λ̃(u, ∅)du

]

= β?E


∫

Λn

1(X ∩ B(u, R̃) = ∅)du︸ ︷︷ ︸
VΛn (X ;R̃)

 .



Consistency of the estimator

With the ergodic theorem suggests to estimate β? by the estimator

β̂n(X ; R̃) =
|Λn|−1NΛn(X ; R̃)

|Λn|−1VΛn(X ; R̃)
.

Proposition

Let X be stationary Gibbs point process, under the assumptions
[FR] and [CH]. Then for any fixed 0 < R < R̃ < +∞, the
estimator β̂n(X ; R̃) of parameter β? is strongly consistent.



Asymptotic normality of the estimator

Proposition

Let X be stationary (ergodic) Gibbs point process, under the
assumptions [FR] and [CH]. Then we have, for any fixed
0 < R ≤ R̃ < +∞, as n→ +∞ and as |Λn| → +∞,√

|Λn|
(
β̂n(X ; R̃)− β?

)
d−→ N (0, σ2(β?)),

where

I σ2(β?) =

∑
j∈B(0,1)

E
[
I∆0(R) (X , h;β?) I∆j (R) (X , h;β?)

]
Rd(1−F (R̃))

2 ,

I I
∆k (R)

(X , h, β
?
) =

∑
u∈X∆k (R)

h(u,X\u)−
∫

∆k (R)

h(u,X )λ(u,X )du.



By using the results of JF.Coeurjolly and E. Rubak (2012), we can
calculate the value σ2(β?) differently as follows:

Proposition

Let X be stationary Gibbs point process. Under the assumptions
[FR] and [CH], we have for any fixed 0 < R < R̃ < +∞,

σ2(β?) =

β?(1− F (R̃)) + β?
2

∫
B(0,R̃)

(1− F0,v (R̃))dv(
1− F (R̃)

)2
,

where

I F (R̃) = Pβ?(X ∩ B(0, R̃) 6= ∅).

I F0,v (R̃) = Pβ?(X ∩ B(0, R̃) 6= ∅,X ∩ B(v , R̃) 6= ∅).



Simulation study

Strauss point process: λ(u, x) = βγ
n[0,R](u,x)

I s1: β = 200, γ = 0.2, R = ϕ.

I s2: β = 200, γ = 0.5, R = ϕ.

I s3: β = 200, γ = 0.8, R = ϕ.
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Boxplots of the Poisson intensity parameter estimates for different
parameters R̃ from 0.8 to 1.2 times the finite range parameter ϕ,
from 500 replications of the models s1,s2,s3 generated on the
window [0, L]2 ⊕ 1.2ϕ and estimated on the window [0, L]2 for

L = 1, 2.



Strauss point process with Hard-Core: λ(u, x) = βγ
n[0,R](u,x)

I shc1: β = 200, γ = 0.2, δ = ϕ/2, R = ϕ.

I shc2: β = 200, γ = 0.5, δ = ϕ/2, R = ϕ.

I shc3: β = 200, γ = 0.8, δ = ϕ/2, R = ϕ.

●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●●

0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2

10
0

15
0

20
0

25
0

30
0

Factor of the finite range

L=1 L=2

Model shc1

●
●●

●

●●●

●●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2

10
0

15
0

20
0

25
0

30
0

35
0

40
0

Factor of the finite range

L=1 L=2

Model shc2

●

●

●

●

●

●

●
●

●

●
●
●●

●●

●●●

●●
●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●●

●●

0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2

10
0

20
0

30
0

40
0

50
0

Factor of the finite range

L=1 L=2

Model shc3

Boxplots of the Poisson intensity parameter estimates for different
parameters R̃ from 0.8 to 1.2 times the finite range parameter ϕ,
from 500 replications of the models shc1,shc2,shc3 generated

on the window [0, L]2 ⊕ 1.2ϕ and estimated on the window [0, L]2

for L = 1, 2.



Piecewise Strauss point process: λ(u, x) = β
∏p

j=1 γ
n[Rj−1,Rj ](u,x)

j

I ps1: β = 200, γ = (0.8, 0.5, 0.2), R = (ϕ/3, 2/3ϕ, ϕ).

I ps2: β = 200, γ = (0.2, 0.8, 0.2), R = (ϕ/3, 2/3ϕ, ϕ).

I ps3: β = 200, γ = (0.8, 0.5, 0.2), R = (ϕ/3, 2/3ϕ, ϕ).
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Boxplots of the Poisson intensity parameter estimates for different
parameters R̃ from 0.8 to 1.2 times the finite range parameter ϕ,
from 500 replications of the models ps1,ps2,ps3 generated on

the window [0, L]2 ⊕ 1.2ϕ and estimated on the window [0, L]2 for
L = 1, 2.
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Remark

I We will not discuss how to consistently specify the
Papangelou conditional intensity to ensure the existence of a
Gibbs point process on Rd , but rather we simply assume we
are given a well-defined Gibbs point process.



I λ(u, x) =
∏

y⊆x\u φ(y ∪ u), x ∈ Nlf , u ∈ Rd

I La condition de portée: contrôle la répartition des points dans
le voisinage des grandes arêtes de x .



Lemma

(ergodic)
We assume that X is ergodic point process. Then for any family of
measurable functions FΛ , indexed by the bounded sets Λ, from Ω
(valued random variable) to R which are additive (i.e.
FΛ∪Λ′ = FΛ + FΛ′ − FΛ∩Λ′ ), shift invariant (i.e.
FΛ(X ) = Fτ(Λ)(τ(X )) for any translation τ ) and integrable
(i.e.E [|FΛ0(X )|] < +∞), we have

lim
n→+∞

|Λn|−1FΛn(X ) = E [FΛ0(X )] , a.s.

where Λn = [−n, n]d (other regular domains (Λn)n≥1 converging
towards Rd could be also considered).



We assume that Pβ∗ is Gibbs measure of the stationary Gibbs

point process X , where β∗ ∈ Θ̊ is the true parameter to be
estimated and for any β denote a current point in Θ, there exists a
stationary Gibbs measure Pβ. If there is more than one stationary
Gibbs measure, then some non ergodic Gibbs measures
automatically exist because, in the convex set of all Gibbs
measures, only the extremal measures are ergodic. But any
stationary Gibbs measure can be represented as a mixture of
ergodic measures. Due to this decomposition, we can assume that
Pβ∗ is ergodic to prove the consistency of our estimator.

Theorem

Let Xn,i , n ∈ N, i ∈ Zd , be a triangular array field in a measurable
space S. For n ∈ N, let Kn ⊂ Zd and for k ∈ Kn, assume

Zn,k = fn,k (Xn,k+i , i ∈ I0) , (2)

where I0 = {i ∈ Zd , |i | ≤ 1} and fn,k : SI0 → Rp. Let
Sn =

∑
k∈Kn

Zn,k . If

(i) c3 := supn∈N supk∈Kn
|Zn,k |3 < +∞,

(ii) ∀n ∈ N, ∀k ∈ Kn, (Zn,k |Xn,j , j 6= k) = 0,

(iii) |Kn| → +∞ as n→ +∞,

(iv) There exists a symmetric matrix Σ ≥ 0 such that∥∥∥∥∥∥|Kn|−1
∑
k∈Kn

∑
j∈Bk (1)∩Kn

Zn,kZn,j − Σ

∥∥∥∥∥∥→ 0,

then |Kn|−1/2Sn
d−→ N (0,Σ) as n→ +∞.



Processus ponctuel d’interaction paires:

λ(u, x) = βγ

∑
v∈x

g(||v − u||)
.


