Some first results of PhD-project:

Inference of within cell protein interactions and spatial structure, using FRET

Jan-Otto Hooghoudt

Aalborg University

Avignon SSIAB, May 102012

Outline of the talk

- Introduction to the general problem and research questions
- Short review of theory of Fluorescence Resonance Energy Transfer
- Dependence of FRET-efficiency on point processes
- Modeling of FRET efficiency
- Generating the point patterns
- Data analysis
- Discussion of some results

Introduction: Problem description

- Distribution and interaction between proteins in cells not well understood
- The interactions take place at the molecular level (1-100 nm)
- These scales can presently not be resolved directly by available microscopic techniques.
- However, FRET-microscopy does provide indirect information regarding proximity of proteins at molecular level
- By FRET, information available where in a cell proteins are close to each other
- But, no information available concerning the protein distribution within a pixel

Introduction: Project Objectives

The project objectives are to:

- develop spatial models modeling the protein distribution at the molecular level
- develop likelihood based inference methods using an available FRET-efficiency model as the generating stochastic mechanism. $Y=g(X ; \theta)$ with $g(\cdot)$ the stochastic mechanism which we can simulate.
- infer information concerning the parameters that define the type and strength of clustering
- infer information concerning the absolute concentrations of proteins and their complexes throughout a cell.

Electrodynamic phenomenon:
Donor molecule gets excited by laser light and de-excites by:

$$
\begin{array}{ll}
\text {-photon emission } & \left(\text { rate } k_{\text {rad }}\right) \\
\text {-FRET } & \left(\text { rate } k_{F R E T}\right)
\end{array}
$$

Where the following relationship exists:

$$
\mathrm{k}_{F R E T}=\mathrm{k}_{\mathrm{rad}}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}}\right)^{6}
$$

$-r=$ distance between donor and acceptor
$-R_{0}=$ Forster distance, the distance r for which 50% of de-excitations due to FRET and 50% due to donor-emission.

The main parameter describing FRET is the FRET efficiency:

$$
E=\frac{\text { rate of de-excitations due to FRET }}{\text { de-excitation rate }}=\frac{k_{F R E T}}{k_{\text {rad }}+k_{F R E T}}
$$

$$
\mathrm{k}_{F R E T}=k_{\mathrm{rad}}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}}\right)^{6} \rightarrow E(r)=\frac{R_{0}^{6}}{R_{0}^{6}+r^{6}}
$$

Highly sensitive to the distance due to r^{-6} : FRET

No-FRET

FRET-efficiency multiple acceptors

When multiple acceptors surround a donor, total rate of de-excitations due to FRET becomes:

$$
\mathrm{k}_{F R E T}^{t o t}=\mathrm{k}_{\mathrm{rad}} \sum_{i=1}^{n}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}_{i}}\right)^{6}
$$

And total rate of de-excitation:

$$
\mathrm{k}_{\mathrm{tot}}=\mathrm{k}_{\mathrm{rad}}\left(1+\sum_{i=1}^{n}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}_{i}}\right)^{6}\right)
$$

So probability of de-excitation by FRET to acceptor A_{i} and due to emission are given by:

$$
P_{F R E T}^{A_{i}}=\frac{\left(\frac{\mathrm{R}_{0}}{\mathrm{r}_{i}}\right)^{6}}{\left(1+\sum_{i=1}^{n}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}_{i}}\right)^{6}\right)} ; P_{r a d}=\frac{1}{\left(1+\sum_{i=1}^{n}\left(\frac{\mathrm{R}_{0}}{\mathrm{r}_{i}}\right)^{6}\right)}
$$

For simulation compute transfer probability-matrix defining all probabilities of de-exitation of D_{j} to A_{i} or due to emission.

Modeling the FRET efficiency

Flow diagram of MC-simulation to model the FRET efficiency for:

- different types of proteins (monomer, dimer, etc)
- absolute concentrations of the proteins

Diagram by Corry et. al. (2005, Biophys. J.)

A FRET image

To calculate the FRET efficiency, emission is measured in 3 channels:
 -Acceptor Channel: Acceptor excitation and acceptor emission

-Donor Channel: Donor excitation and donor emission
-FRET Channel: Donor excitation, acceptor emission

Figure: Wallrabe et.al 2003

Generating the point patterns (in R)

For a Strauss hardcore point process \mathbf{X}, the (unnormalized) density is given by:

$$
\begin{equation*}
f(\mathbf{x}) \propto \beta^{n(\mathbf{x})} \gamma^{s_{R}(\mathrm{x})} 0^{s_{h c}(\mathbf{x})} \tag{1}
\end{equation*}
$$

$-n(\mathbf{x})$ number of points in pattern \mathbf{x}
$-s_{R}(\mathbf{x})$ number of pair-of-points within distance R in pattern \mathbf{x}.
$-s_{h c}(\mathbf{x})$ number of pair-of-points within distance $h c$ in pattern \mathbf{x}.

$$
\begin{equation*}
s_{R}(\mathbf{x})=\sum_{\{u, v\} \subseteq \mathbf{x}} 1[\|u-v\| \leq R] \tag{2}
\end{equation*}
$$

$\beta>0$, and γ the interaction parameter defining the behavior of the process.

- $0<\gamma<1, \mathbf{X}$ is repulsive,
- $\gamma=1, \mathbf{X} \sim$ Poisson hard-core
- $\gamma>1, \mathbf{X}$ is clustered, but repulsive at a small scale.

Generating the point patterns (in R)

Further we have used the Multi-Strauss hardcore process:

$$
\begin{equation*}
f(\mathbf{x}) \propto \beta^{n(\mathbf{x})} \gamma_{a a}^{s_{R a a}(\mathbf{x})} \gamma_{d d}^{s_{R d d}(\mathbf{x})} \gamma_{d a}^{s_{R d a}(\mathbf{x})} 0^{s_{R a a}(\mathbf{x})} 0^{s_{R d d}(\mathbf{x})} 0^{s_{R d a}(\mathrm{x})} \tag{3}
\end{equation*}
$$

Parameters and interaction radius depending on the type of point (Donor or Acceptor)

Strauss Patterns

- donor - acceptor

Density in \#points per pixel Pixel-size $=100 \times 100 \mathrm{~nm}$

Strauss Patterns

- donor - acceptor

Density in \#points per pixel Pixel-size $=100 \times 100 \mathrm{~nm}$

Strauss process: E versus gamma

Strauss process: Dependency E pixel on ratio \#acceptors-to-\#donors

Multi-Strauss Patterns

- donor - acceptor

Notation for Multi-Strauss:

Gamma $=\left[\begin{array}{ll}g_{D D} & g_{D A} \\ g_{A D} & g_{A A}\end{array}\right]$
$=\left(g_{D D}, g_{D A}, g_{A D}, g_{A A}\right)$

Multi-Strauss process: E versus gamma

$D=10$

$$
D=100
$$

Variogram: correlation E values between pixels

Averaged

pixel-resolution used $=25 \times 25 \mathrm{~nm}$
empirical pixel sizes $=100 \times 100 \mathrm{~nm}$

Variogram: correlation E values between pixels

hc=30 ri=50 ga=10 D=50

Variogram pattern 1

Variogram pattern 2

Averaged

pixel-resolution used $=50 \times 50 \mathrm{~nm}$
empirical pixel sizes
$=100 \times 100 \mathrm{~nm}$

Inference

Possibilities:

- method of moments: match empirical summary statistics (pixel means, variances, variograms...) with theoretical counterparts (approximated using simulation)
- implicit likelihood: approximate likelihood function for FRET pixel intensities using simulation
- Bayesian inference (MCMC): X viewed as missing data.

Implicit likelihood

Defining θ as a multi-dimensional parameter containing; type of model, clustering strenght, absolute concentrations of proteins.

- we obtain a probability distribution function $P(X ; \theta)$
- from $P(X ; \theta)$ we generate $Y=g(X ; \theta)$, with $g(\cdot)$ the MC-simulation, and Y the FRET efficiency
In this way we obtain the likelihood function:

$$
L(\theta)=P(Y ; \theta)
$$

which can not be obtained explicitly.

1st trial with estimating implicit likelihood Density function estimation: E image-to-image

Hist E for r66hc40ga5

E

Densfun. Estimate

Likelihood function...

Questions ... ?

