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Johnson-Mehl germination-growth model

The main idea

Studying the Johnson-Mehl germination-growth model in Rd.

Estimating parameters of specific parametric models for the
conditional intensity by maximum likelihood.
Model checking by new functional summary statistics related
to the inhomogeneous K- function and to the Palm
distribution of the typical Johnson-Mehl cell.
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Johnson-Mehl germination-growth model
Johnson-Mehl germination-growth Model

Definition

Φ ≡ {(xi, ti)} ⊂ Rd × [0,∞): Primary process, a space-time
Poisson process with intensity function κ(t).

Growth Mechanism:
Velocity v, which is constant during the process.
Time T ((x, t), y)

T ((x, t), y) = t+ ‖x− y‖/v, (x, t) ∈ Rd × [0,∞) and y ∈ Rd.

New points and cells form and grow only in uncovered space.
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Johnson-Mehl germination-growth Model

Definition(cont.)

Growth ceases for each cell whenever and wherever it touches
a neighbouring cell.

Cells: Ci = C(xi, ti) = {y ∈ Rd : Ti(y) ≤ Tj(y) for all j 6=
iwith (xj , tj) ∈ Ψ}, where Tj(xi) = T ((xj , tj), xi).

Figure: The Johnson-Mehl model for times (a) t=1, (b) t=3, and
(c) t=7
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Johnson-Mehl germination-growth Model

Definition(cont.)

New arrived point is thinned if it falls within any of the
existing growing cells.

Ψ = {(xi, ti) ∈ Φ : Tj(xi) > ti for all (xj , tj) ∈ Φ}.

Figure: Thinned and unthinned points of a germination-growth process
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Johnson-Mehl germination-growth Model

Johnson-Mehl and Voronoi tessellation

If the points of Φ all arrive at exactly the same time, the
Johnson-Mehl tessellation reduces to a Voronoi tessellation.

Figure: Voronoi tessellation; cells are convex polyhedra.
J-M tessellation: cells here are non-convex sets with curved
boundaries
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Johnson-Mehl germination-growth Model

Historical point of view

J-M germination-growth model well studied from a
probabilistic point of view, with the pioneering work by
Kolmogorov (1937) and Johnson and Mehl (1939)

Figure: Silver crystal growing on a ceramic substrate.

Probabilistic studies of J-M tessellation in Meijering (1953),
Miles (1972), Horálek (1988, 1990), Møller (1992, 1995)
The statistical aspects?
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Johnson-Mehl germination-growth model
First and second-order properties

First-order properties

The intensity of Ψ is given by

ρ(t) = exp
(
−
∫ ∫

C(0,t)
κ(s) dx ds

)
κ(t)

C(x, t) = {(y, s) ∈ Rd × [0,∞) : T ((y, s), x) ≤ t}

Figure: Cone generated by (x1, t1) (Red colored area) and by the
thinned point (Blue+Red colored area)
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Johnson-Mehl germination-growth model
First and second-order properties

Stationarity of Ψ

For which choice of κ, ρ is constant?

Suppose d = 1,

ρ(t) = exp
(
−2v

∫ t

0
(t− s)κ(s)ds

)
κ(t). (1)

By (1) we have obtained a second-order non-linear differential
equation with solution

κ(t) = c1
cos2(c2t+ c3) , (2)

c1, c2 and c3 are constants (and c2t+ c3 6= kπ/2, k ∈ Z\{0}).
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Johnson-Mehl germination-growth model
First and second-order properties

Second-order properties
Let (x, s) 6= (y, t) in Rd × [0,∞) with distance r = ‖x− y‖, (x, s)
and (y, t) are in Ψ, if T ((x, s), y) > t and T ((y, t), x) > s, or
r > v|s− t|.

Second-order product densityρ(2)((x, s), (y, t)) = ρ
(2)
0 (r, s, t) = ρ

(2)
0 (r, t, s).

Using the Slivnyak-Mecke’s formula, the second-order product
density of Ψ is given by
ρ

(2)
0 (r, s, t) = κ(s)κ(t)1[r > v|s− t|] exp

(
−
∫ max{s,t}

0
κ(u)V∪(r, s− u, t− u) du

)
.

Figure: V∪(r, s− u, t− u)
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Johnson-Mehl germination-growth model
First and second-order properties

Second-order properties

The pair correlation function is given by

g(r, s, t) = 1[v|s− t| < r < v(s + t)] exp

(
−

∫ (s+t−r/v)/2

0

κ(u)V∩(r, s− u, t− u) du

)
+ 1[r ≥ v(s + t)].

V∩(r, s− u, t− u) = V (b(x, v(s− u)) ∩ b(y, v(t− u))).
V∩ > 0⇐⇒ u < (s + t− r/v)/2when r > v|s− t|.

Since g(r, s, t) is not a function of r and s− t only. Therefore, Ψ is
not second-order intensity-reweighted stationary.
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Johnson-Mehl germination-growth model
First and second-order properties

V∩(r, s− u, t− u)

V∪(r, s− u, t− u) = ωd[v(s− u)]d+ + ωd[v(t− u)]d+ − V∩(r, s− u, t− u)

volume of a d-dimensional hyper-spherical cap:

Vd(l, h) =
1
2

πd/2

Γ(1 + d/2)
r
d
I(2lh−h2)/l2 ((d + 1)/2, 1/2)

Ic(a, b) =
1

B(a, b)

∫ c

0

u
a−1(1− u)b−1du with B(a, b) =

Γ(a)Γ(b)
Γ(a + b)

V∩(r, s− u, t− u) = Vd

(
v(s− u),

[v(t− u)]2 − (r − v(s− u))2

2r

)
+ Vd

(
v(t− u),

[v(s− u)]2 − (r − v(t− u))2

2r

)
.
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Johnson-Mehl germination-growth model
Functional summary statistics and non-parametric estimation

Inhomogeneous K-function-like summary statistics and their Non-parametric

Estimation

For R > 0, define

K1(R) = E
∑
i6=j

1
[
xi ∈ W, v(ti + tj) < ‖xi − xj‖ ≤ R

]
|W |ρ(ti)ρ(tj)

K2(R) = E
∑
i6=j

1
[
xi ∈ W, ‖xi − xj‖ ≤ v(ti + tj), ‖xi − xj‖ ≤ R

]
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.
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∑
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Summary statistics based on the characteristics for the typical Johnson-Mehl cell

The Palm distribution of the typical cell C is defined by

ζ|W |P (C ∈ F ) = E
∑
i

1 [Tj(xi) > ti ∀j 6= i, xi ∈W, Ci − xi ∈ F ]

Intuitively, C follows the conditional distribution of a Johnson-Mehl
cell given that its nucleus is located at an arbitrary fixed point (here
at the origin).
Let o denote the origin.

C(o, t|Φ) = {y ∈ Rd : T ((o, t), y) ≤ T ((xj , tj), y) for all (xj , tj) ∈ Ψ}

Hence, by Slivnyak-Mecke formula

P (C ∈ F ) =
∫
P (Tj(o) > t ∀j, C((o, t)|Φ) ∈ F )κ(t) dt/ζ.

Møller and Ghorbani Johnson-Mehl germination-growth model



Johnson-Mehl germination-growth model
Functional summary statistics and non-parametric estimation

Summary statistics based on the characteristics for the typical Johnson-Mehl cell

The Palm distribution of the typical cell C is defined by

ζ|W |P (C ∈ F ) = E
∑
i

1 [Tj(xi) > ti ∀j 6= i, xi ∈W, Ci − xi ∈ F ]

Intuitively, C follows the conditional distribution of a Johnson-Mehl
cell given that its nucleus is located at an arbitrary fixed point (here
at the origin).

Let o denote the origin.

C(o, t|Φ) = {y ∈ Rd : T ((o, t), y) ≤ T ((xj , tj), y) for all (xj , tj) ∈ Ψ}

Hence, by Slivnyak-Mecke formula

P (C ∈ F ) =
∫
P (Tj(o) > t ∀j, C((o, t)|Φ) ∈ F )κ(t) dt/ζ.

Møller and Ghorbani Johnson-Mehl germination-growth model



Johnson-Mehl germination-growth model
Functional summary statistics and non-parametric estimation

Summary statistics based on the characteristics for the typical Johnson-Mehl cell

The Palm distribution of the typical cell C is defined by

ζ|W |P (C ∈ F ) = E
∑
i

1 [Tj(xi) > ti ∀j 6= i, xi ∈W, Ci − xi ∈ F ]

Intuitively, C follows the conditional distribution of a Johnson-Mehl
cell given that its nucleus is located at an arbitrary fixed point (here
at the origin).
Let o denote the origin.

C(o, t|Φ) = {y ∈ Rd : T ((o, t), y) ≤ T ((xj , tj), y) for all (xj , tj) ∈ Ψ}

Hence, by Slivnyak-Mecke formula

P (C ∈ F ) =
∫
P (Tj(o) > t ∀j, C((o, t)|Φ) ∈ F )κ(t) dt/ζ.

Møller and Ghorbani Johnson-Mehl germination-growth model



Johnson-Mehl germination-growth model
Functional summary statistics and non-parametric estimation

Summary statistics based on the characteristics for the typical Johnson-Mehl cell

The Palm distribution of the typical cell C is defined by

ζ|W |P (C ∈ F ) = E
∑
i

1 [Tj(xi) > ti ∀j 6= i, xi ∈W, Ci − xi ∈ F ]

Intuitively, C follows the conditional distribution of a Johnson-Mehl
cell given that its nucleus is located at an arbitrary fixed point (here
at the origin).
Let o denote the origin.

C(o, t|Φ) = {y ∈ Rd : T ((o, t), y) ≤ T ((xj , tj), y) for all (xj , tj) ∈ Ψ}

Hence, by Slivnyak-Mecke formula

P (C ∈ F ) =
∫
P (Tj(o) > t ∀j, C((o, t)|Φ) ∈ F )κ(t) dt/ζ.

Møller and Ghorbani Johnson-Mehl germination-growth model



Johnson-Mehl germination-growth model
Functional summary statistics and non-parametric estimation

Palm distribution of the typical shortest nucleus-boundary distance R

In the Johnson-Mehl case, the distribution function for R is

D(r) = P (R ≤ r) = 1−
∫∫

P (Φ ∩H(t, r) = ∅)κ(t) dx dt/ζ, r > 0,

H(t, r) = {(y, u) ∈ Rd × [0, t] : ‖y‖ ≤ 2r + v(t− u)}
∪ {(y, u) ∈ Rd × (t, t+ r/v] : v(t− u) ≤ ‖y‖ ≤ 2r + v(t− u)}.

Figure: Example of the region H(t, r).
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Palm distribution of the typical shortest nucleus-boundary distance R

In the Voronoi case, 2R is just the typical nearest-neighbor distance
for the nuclei.

Figure: Shortest boundary distance: Vorronoi tessellation (left panel), and Johnson-Mehl tessellation
(right panel)

By ignoring edge effects, a ratio unbiased non-parametric estimate
of D(r) is

D̂(r) = 1
|W |

∑
i

1 [Tj(xi) > ti ∀j 6= i, xi ∈W, Ri ≤ r]
ζ̂

.
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Johnson-Mehl germination-growth model
Parametric Models

Model M1

M1: κ(t) = αtβ−1 where α > 0, β > 0.

From a probabilistic point of view Johnson-Mehl tessellations under
model M1 have been studied in:
In Horálek (1988, 1990) for d = 3, and in more detail and for any
d ≥ 1 in Møller (1992, 1995).
From a statistical point of view in: only paper is Quine and
Robinson (1992).They considered only the one-dimensional case
d = 1 and the time-homogeneous case, β = 1.
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Johnson-Mehl germination-growth model
Parametric Models

Model M2

M2: κ(t) = αγβ

Γ(β) t
β−1 exp(−γt) where α > 0, β > 0, γ > 0.

Source of this model: Bennett and Robinson (1990)
This model has been used by Thomson et al. (1995), Holst et al.
(1996) and in a series of papers by Chiu and coworkers to analysis
neurotransmitter data-set, see Chiu et al. (2003) and the refrences
therein.
Cowan et al. (1995) considered the exponential model when
modelling the mechanism of the replication of a DNA molecule.
Chiu (1995) studied the limiting distribution of the time of
completion for Johnson-Mehl model within a bounded region.
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Parametric Models

Functional summary statistics for model M1
The intensity function: ρ(t) = exp

(
−αωdvdtβ+dB(β, d+ 1)

)
αtβ−1

For β = 1, ρ(t)↘ and ρ(t)→ α as t→ 0.

For β > 1, ρ(t)↗ for t ≤ t∗ =
[

β−1
αωdvd(β+d)B(β,d+1)

]1/(β+d)
and

ρ(t)↘ for t ≥ t∗, with ρ(t)→ 0 as t→ 0.
As β →∞ or β → 0, then ρ(t)→ 0, in both case in limit a Voronoi
tessellation is obtained.
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Figure: Behavior of ρ(t) for model M1 with d = 2 and α = v = 1, when β = 0.5 (solid line),
β = 1 (dashed line), β = 2 (dotted line), and β = 3 (dot-dashed line).
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Figure: Behavior of ρ(t) for model M1 with d = 2 and α = v = 1, when β = 0.5 (solid line),
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Pair correlation function under model M1

For d = 1, V∩(r, s− u, t− u) = v(s+ t− 2u)− r.
The pair correlation function:

g(r, s, t) = 1[r > v|s− t|] exp
(
α(v(β + 1) + β)
β(β + 1)2β (s+ t− r/v)β+1

)

Shortest nucleus-boundary distance distribution function

P (R ≤ r) = 1−
∫

exp
(
−2α
β

(
2r(t+ r/v)β + v

β + 1 t
β+1
))

αtβ−1 dt/ζ.
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Figure: Behavior of ρ(t) for model M2 with d = 2, α = v = γ = 1,
β = 0.5 (solid line), β = 1 (dashed line), β = 2 (dotted line) and
β = 3 (dot-dashed line).
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Figure: Behavior of ρ(t) for model M2 with d = 2, α = v = γ = 1,
β = 0.5 (solid line), β = 1 (dashed line), β = 2 (dotted line) and
β = 3 (dot-dashed line).
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Pair correlation function under model M2

For d = 1 and v|s− t| < r < v(s+ t).

The pair correlation function:

g(r, s, t) = exp
(
−2αv

(
qΓ(q/2;β, γ)− β

γ
Γ(q/2;β + 1, γ)

))
,

where q = s+ t− r/v
Shortest nucleus-boundary distance distribution function:

P (R ≤ r) = 1−
∫

exp
(
−2α

(
2rΓ(t+ r

v
;β, γ) + vΓ(t;β, γ)(t− β + 1

γ
)
))

× αγβ

Γ(β) t
β−1 exp(−γt) dt/ζ.
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Johnson-Mehl germination-growth model
Likelihood Analysis

Likelihood when Φ is defined on W × [0,∞)

Assume d = 1 and let κ = κθ depends on a parameter θ, e.g.,
θ = (α, β) ∈ [0,∞)2 in case of M1 or θ = (α, β, γ) ∈ [0,∞)3 in
case of M2.

For a finite version of Ψ, ΨW , defined on W × [0,∞) the
conditional intensity function is
λ(x, t|Ht) dt = 1[Ti(x) > t ∀ ti < t with (xi, ti) ∈ ΨW ]K(dt), (x, t) ∈ W × [0,∞),

Ht the information about ΨW up to but not including time t.
A realisation Ψ1 = {(x1, t1), . . . , (xn, tn)} has been given.
The likelihood function is

L(θ, v; Ψ1) =

[
n∏
i=1

κθ(ti)

]
exp

− ∫ ∫
W×[0,∞)

1[Ti(x) ≥ t ∀ti < t, i ∈ {1, . . . , n}]κθ(t) dx dt

 ,
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Likelihood Analysis

Likelihood when Φ is defined on W × [0,∞)

{(x, t) ∈W × [0,∞),1(.) = 1} is given by
A = {(x, t) : x ∈W, 0 ≤ t ≤ Ti(x) if x ∈ Ci},

Figure: Example of the region A (shaded region) when n = 2.

Thus

L(θ, v; Ψ1) =

[
n∏
i=1

κθ(ti)

]
exp

−∫ ∫
A

κθ(t) dx dt

 .
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Likelihood Analysis

Likelihood when Φ is defined on R× [0,∞)

Assume x1 < . . . < xn and condition on x1 and xn to avoid the
effect of Φ points outside the observation window W on the shape
of region A.

Then the likelihood of observing Ψ1 given (x1, t1) and (xn, tn) is

L(θ, v; Ψ1) =
[
n−1∏
i=2

κθ(ti)
]

exp

− ∫∫
A|{x1,xn}

κθ(t) dxdt

 ,

A|{x1, xn} = {(x, t) : x ∈ [x1, xn], 0 ≤ t ≤ Ti(x) if x ∈ Ci}.
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Likelihood Analysis

Likelihood when Φ is defined on [0,∞)× [0,∞)

Suppose W = [0, b].

The likelihood of observing Ψ1 given (xn, tn) is
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Johnson-Mehl germination-growth model
A case study: Neurotransmitter data

Release of neurotransmitter at the neuromuscular junction

The neuronal axon terminal at the neuromuscular junction has branches consisting of strands containing
many randomly scattered sites.

An action potential triggers the release of neurotransmitters to the
synapse as the synaptic vesicles diffuse into the cellular membrane.
Each quantum released is assumed to cause release of an inhibitory
substance which diffuses along the terminal at a constant rate
preventing further releases in the inhibited region (Bennett and
Robinson (1990)).

Figure: Neuromuscular junction
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Johnson-Mehl germination-growth model
A case study: Neurotransmitter data

Data

The data sets contain the times and the amplitudes of release of all
transmitters in a series of 800 experiments.

The range of releases is from 0 to 4. The frequencies of 0’s,1’s,...
are 101, 387, 237, 66, 9, respectively.
Following Chiu et al. (2003) we serve the inverse square root
of amplitudes as a surrogate of locations, which are not
observable.
50 experiments with two identical amplitudes are ignored.
Due to have the same range for the real data-sets and the simulated
ones we assume W = 1. By multiplying the location values by 5 we
obtain roughly uniform values on [0,1].
Among the transformed data, four outliers above 1 are deleted.
Finally, 746 experiments with 101 experiments with no germinated
seed and 645 with at least one germinated seed are obtained. The
frequencies of 1’s, ..., 4’s now being 387, 210, 45, 3, respectively.
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Johnson-Mehl germination-growth model
A case study: Neurotransmitter data

Model checking

Estimates: α̂ = 1.29, γ̂ = 13.3, β̂ = 5.36, v̂ = 0.018.

We estimated K1- and K2-functions for each single realization and
considered the mean of them as K̂ for all the realizations
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Figure: Left: Estimated K1-function for the data (solid line), and average and envelopes calculated
from 39 simulations of the fitted model (dashed lines). Right: as left for K2-function.

For all R values, K̂1 and K̂2 for the data is between the envelopes,
so the plot is in favor of the fitted model.
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A case study: Neurotransmitter data

Work in progress

Estimating the parameters of model M1 by MLE

Checking the fitted model by D(r)
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