
Comparisons of discriminant 
analysis techniques for high-
dimensional correlated data

Line H. Clemmensen
DTU Informatics
lhc@imm.dtu.dk

Thursday, May 10, 12

mailto:lhc@imm.dtu.dk
mailto:lhc@imm.dtu.dk


Overview

Linear discriminant analysis (notation)
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proposed methods
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Linear discriminant analysis
We model K classes by Gaussian normals

kth class has distribution Ck~N(μk, Σ)

Maximum-likelihood estimate of within-class 
covariance matrix is
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Linear discriminant analysis

A new observation xnew is classified using the following 
rule
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Issues and fixes for high 
dimensions (p>>n)

Within-class covariance matrix becomes singular

Regularize within-class covariance matrix to have full 
rank

Introduce sparseness in feature-space (dimension 
reduction)

So far papers have focused on sparseness criterion, 
cost function and speed.
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Focus here

The estimate of the within-class covariance matrix is 
crucial
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Assuming independence

Use a diagonal estimate of the within-class covariance 
matrix

Similar to a univariate regression approach
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Nearest shrunken centroids
Diagonal estimate of within-class covariance matrix

Soft-thresholding to perform feature selection
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Penalized linear discriminant 
analysis

Diagonal estimate of within-class covariance

Using L1-norm to introduce sparsity in Fisher’s criterion 
and a maximization-minorization algorithm for 
optimization.
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Assuming correlations exist 

Estimate off-diagonal in within-class covariance matrix

Should preferably exploit high correlations in data and 
“average out noise”
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Regularized discriminant 
analysis

Trade-off diagonal estimate and full estimate of within-
class covariance matrix

Use soft-thresholding to obtain sparseness
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Sparse discriminant analysis
Full estimate of covariance matrix based on a L1- and 
L2-penalized feature-space

Where               , and β are the estimated sparse and 
regularized discriminant directions in SDA.
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Sparse linear discriminant 
analysis by thresholding

Using thresholding to obtain sparsity in the within-class 
covariance matrix

As well as in the feature-space

where δkl = μk - μl
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Simulations S

Four classes of Gaussian distributions Ck: xᵢ~N(μk, Σ) 
with means 

And within-class covariance matrix is block-diagonal 
with 100 variables in each block and the (j, j’)th element 
of each block equal to rabs(j-j’) where 0 ≤ r ≤ 1.
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Simulation means of four 
classes
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Simulations S

S1: Independent variables r=0, p=500

S2: Correlated variables r=0.99, p=500

S3: Correlated variables r=0.99, p=1000

S4: Correlated variables r=0.9, p=1000

S5: Correlated variables r=0.8, p=1000

S6: Correlated variables r=0.6, p=1000
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Simulations X

Four Gaussian classes with means as in S simulations

Off-diagonal of within-class covariance matrix equal to 
ρ (diagonal equals one)
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Simulations X

X1: Correlated variables with ρ=0.8, p=1000

X2: Correlated variables with ρ=0.6, p=1000

X3: Correlated variables with ρ=0.4, p=1000

X4: Correlated variables with ρ=0.2, p=1000

X5: Correlated variables with ρ=0.1, p=1000

X6: Independent variables with ρ=0, p=1000

Thursday, May 10, 12



Procedure

1200 observations were simulated for each case

100 observations were used to train the model

another 100 to validate and tune parameters

1000 observations were used to report test errors

25 repetitions were performed and mean and standard 
deviations reported
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Results
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Discussion
Assuming independence works best when variables 
are independent

Assuming correlations exist works best when variables 
are correlated

An illustration of a part of the correlation matrix may 
reveal the structure of data

Interpretability - low dimensional projections of data 
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