Comparisons of discriminant analysis techniques for highdimensional correlated data

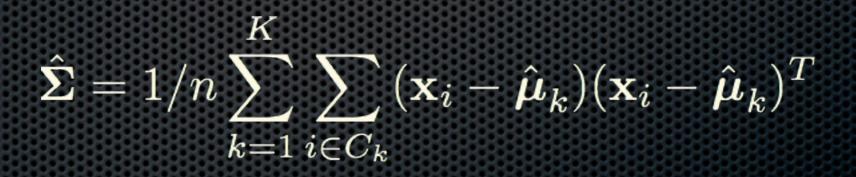
Line H. Clemmensen DTU Informatics Ihc@imm.dtu.dk

Overview

- Linear discriminant analysis (notation)
- Issues for high-dimensional data
- Assumptions about variables independent or correlated?
- Within-class covariance estimates in a range of recently proposed methods
- Simulations
- Results and discussion

Linear discriminant analysis

- We model K classes by Gaussian normals
- k^{th} class has distribution $C_k \sim N(\mu_k, \Sigma)$
- Maximum-likelihood estimate of within-class covariance matrix is



Linear discriminant analysis

A new observation x_{new} is classified using the following rule

$$\max_{C_k} \{ \boldsymbol{\mu}_k \boldsymbol{\Sigma}^{-1} \mathbf{x}_{new}^T - \frac{1}{2} \boldsymbol{\mu}_k \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k^T \}$$

Issues and fixes for high dimensions (p >> n)

- Within-class covariance matrix becomes singular
- Regularize within-class covariance matrix to have full rank
- Introduce sparseness in feature-space (dimension reduction)
- So far papers have focused on sparseness criterion, cost function and speed.

The estimate of the within-class covariance matrix is crucial

Thursday, May 10, 12

Assuming independence

- Use a diagonal estimate of the within-class covariance matrix
- Similar to a univariate regression approach

Nearest shrunken centroids

Diagonal estimate of within-class covariance matrix

$\hat{\mathbf{\Sigma}}_{NSC} = ext{diag}(\hat{\mathbf{\Sigma}})$

Soft-thresholding to perform feature selection

$\hat{\boldsymbol{\Sigma}}_{NSC}^{-1} \hat{\boldsymbol{\mu}}_k^* = \operatorname{sign}(\hat{\boldsymbol{\Sigma}}_{NSC}^{-1} \hat{\boldsymbol{\mu}}_k) (|\hat{\boldsymbol{\Sigma}}_{NSC}^{-1} \hat{\boldsymbol{\mu}}_k| - \Delta)_+$

Penalized linear discriminant analysis

Diagonal estimate of within-class covariance

 $ilde{\mathbf{\Sigma}}_{PLDA} = ext{diag}(\hat{\mathbf{\Sigma}})$

 Using L₁-norm to introduce sparsity in Fisher's criterion and a maximization-minorization algorithm for optimization.

Assuming correlations exist

- Estimate off-diagonal in within-class covariance matrix
- Should preferably exploit high correlations in data and "average out noise"

Regularized discriminant analysis

 Trade-off diagonal estimate and full estimate of withinclass covariance matrix

 $\hat{\boldsymbol{\Sigma}}_{RDA}(\alpha) = \alpha \hat{\boldsymbol{\Sigma}} + (1 - \alpha) \operatorname{diag}(\hat{\boldsymbol{\Sigma}})$

Use soft-thresholding to obtain sparseness

 $\hat{\boldsymbol{\Sigma}}_{RDA}^{-1}\hat{\boldsymbol{\mu}}_{k}^{*} = \operatorname{sign}(\hat{\boldsymbol{\Sigma}}_{RDA}^{-1}\hat{\boldsymbol{\mu}}_{k})(|\hat{\boldsymbol{\Sigma}}_{RDA}^{-1}\hat{\boldsymbol{\mu}}_{k}| - \Delta)_{+}$

Sparse discriminant analysis

 Full estimate of covariance matrix based on a L₁- and L₂-penalized feature-space

$$\hat{\boldsymbol{\Sigma}}_{SDA} = 1/n \sum_{k=1}^{K} \sum_{i \in C_k} (\tilde{\mathbf{x}}_i - \tilde{\boldsymbol{\mu}}_k) (\tilde{\mathbf{x}}_i - \tilde{\boldsymbol{\mu}}_k)^T$$

• Where $\tilde{\mathbf{x}}_i = \mathbf{x}_i \hat{\boldsymbol{\beta}}$, and $\boldsymbol{\beta}$ are the estimated sparse and regularized discriminant directions in SDA.

Sparse linear discriminant analysis by thresholding

 Using thresholding to obtain sparsity in the within-class covariance matrix

 $\hat{\Sigma}_{ij,SLDAT} = \hat{s}_{ij}I(|\hat{s}_{ij}| > t_1), \text{ with } t_1 = M_1\sqrt{\log p}/\sqrt{n}$

• As well as in the feature-space $\tilde{\delta}_{i,kl} = \hat{\delta}_{i,kl} I(|\hat{\delta}_{i,kl}| > t_2)$

• where $\delta_{kl} = \mu_k - \mu_l$

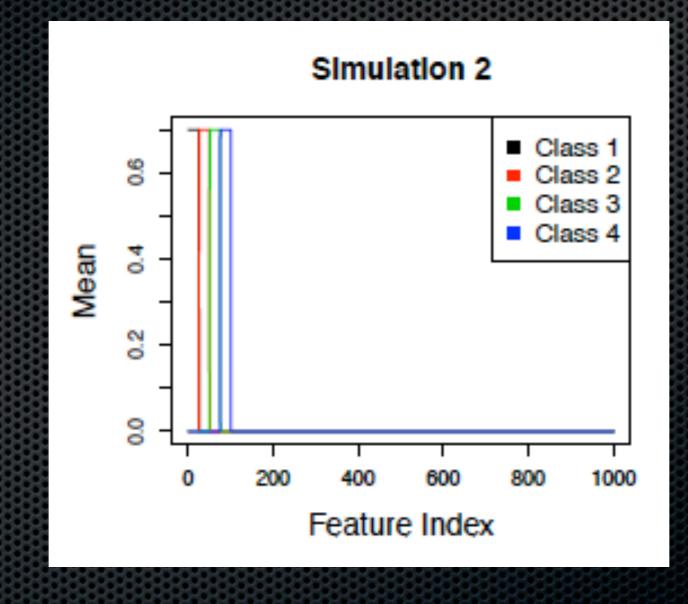
Simulations S

Four classes of Gaussian distributions C_k: x_i~N(μ_k, Σ) with means

 $\boldsymbol{\mu_{jk}} = 0.7 \times \boldsymbol{1}_{((k-1)\times 100+1 \le j \le k \times 100)}$

And within-class covariance matrix is block-diagonal with 100 variables in each block and the (*j*, *j*)th element of each block equal to $r^{abs(j-j')}$ where $0 \le r \le 1$.

Simulation means of four classes



Thursday, May 10, 12

Simulations S

- S1: Independent variables r=0, p=500
- S2: Correlated variables r=0.99, p=500
- S3: Correlated variables r=0.99, p=1000
- S4: Correlated variables r=0.9, p=1000
- S5: Correlated variables r=0.8, p=1000
- S6: Correlated variables r=0.6, p=1000

Simulations X

Four Gaussian classes with means as in S simulations

 Off-diagonal of within-class covariance matrix equal to ρ (diagonal equals one)

Simulations X

- X1: Correlated variables with $\rho = 0.8$, p = 1000
- X2: Correlated variables with ρ =0.6, p=1000
- X3: Correlated variables with $\rho = 0.4$, p = 1000
- X4: Correlated variables with ρ =0.2, p=1000
- X5: Correlated variables with $\rho=0.1$, p=1000
- X6: Independent variables with $\rho=0$, p=1000

Procedure

- 1200 observations were simulated for each case
- 100 observations were used to train the model
- another 100 to validate and tune parameters
- 1000 observations were used to report test errors
- 25 repetitions were performed and mean and standard deviations reported

Results

	PLDA	NSC	SDA	RDA	SLDAT
S1: #errors	116.6(4.3)	88.5 (2)	124.4(4.6)	90.9 (2.4)	141.2(5.9)
#features	348(18.8)	276(17.1)	261.7(18.1)	218.1(12.3)	292(23.1)
S2: #errors	539.72(23.9)	424.84(26.6)	0(0)	0.36 (0.3)	13.2(10.8)
#features	264.32(34)	143.92(12.3)	500(0)	449.52(14.7)	473.28(14.8)
S3: #errors	602.1(18.8)	449.2(24.9)	0 (0)	0.04 (0)	18.6(6.5)
#features	444.4(69.5)	170.2(27.3)	847.6(1.6)	715.9(39.2)	890.8(43.5)
S4: #errors	622.4(18.2)	440.2(21)	0.12 (0.1)	3.1(0.8)	256.9(24.7)
#features	566.9(66.6)	153.5(23)	841.4(10.8)	955.7(35.8)	711(76.9)
S5: #errors	550.7(22.7)	412.9(26.9)	2.2(0.4)	5(1.4)	397.4(21.9)
#features	436.2(68)	161.6(21.1)	814.3(18.2)	867.7(62.4)	585(85.2)
S6: #errors	540.7(20.1)	398.9(18)	44.1(4.4)	39.2 (5.7)	463.8(22.5)
#features	457.5(60.1)	143.6(16.7)	406.5(30.8)	260.1(58.5)	365.6(72.1)
X1: #errors	166.9(10.1)	58.4(10.4)	0(0)	2.2(0.6)	12.5(1.5)
#features	133.7(16.6)	125.6(24.8)	857.4(1.7)	376.4(86.7)	725.8(73.3)
X2: #errors	134.7(7.9)	29(6.2)	0 (0)	6.72(2.1)	42.4(6.6)
#features	155.2(6.6)	141(14.3)	857.3(2.1)	293(81.1)	218.3(53.9)
X3: #errors	106.3(7.8)	17.4(3.4)	0.04 (0)	7.12(1.5)	21.4(6.1)
#features	192.2(6.5)	161.6(30.6)	858.3(1.8)	477.4(94.2)	125.6(6.3)
X4: #errors	36(4.3)	5.6(1.1)	0.08 (0.1)	6.4(1.4)	5(1.5)
#features	245.2(36.4)	363.5(47.8)	862.4(1.7)	594.9(93)	181.2(16.8)
X5: #errors	11.1(1.7)	6(1.5)	0.4(0.1)	2.8(0.7)	4.3(1.5)
#features	208.2(15)	650.7(47.7)	861.3(1.5)	797.4(73.7)	366.2(51.9)
X6: #errors	166.3(6.7)	116.7(3.3)	174.6(4.2)	120 (5.1)	211.7(6.2)
#features	418.2(45.1)	320.6(33.4)	339.6(27)	296(22.3)	357.4(50.8)

Discussion

- Assuming independence works best when variables are independent
- Assuming correlations exist works best when variables are correlated

- An illustration of a part of the correlation matrix may reveal the structure of data
- Interpretability low dimensional projections of data

References

- Clemmensen, L., Hastie, T., Witten, D., Ersbøll, B.: Sparse discriminant analysis. Technometrics 53(4): 406-413 (2011)
- CRAN: The comprehensive r archive network (2009). URL <u>http://cran.r-project.org/</u>
- Fisher, R.: The use of multiple measurements in axonomic problems. Annals of Eugenics **7**:179-188 (1936)
- Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and itsapplications in microarrays. Biostatistics 8(1), 86-100 (2007)
- Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. The Annals of Statistics 23(1), 73-102 (1995)
- Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2 edn. Springer (2009)
- Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67 (1970)
- Shao, J., Wang, G., Deng, X., Wang, S.: Sparse linear discriminant analysis by thresholding for high dimensional data. The Annals of Statistics 39(2), 1241-1265 (2011)
- Sjöstrand, K., Carden, V.A., Larsen, R., Studholme, C.: A generalization of voxel-wise procedures for highdimensional statistical inference using ridge regression. In: J.M.Reinhardt, J.P.W. Pluim (eds.) SPIE, SPIE 6914, Medical Imaging (2008)
- Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class prediction by nearest shrunken centroids, with applications to dna microarrays. Statistical Science 18, 104-11 (2003)
- Tibshirani, R., Saunders, M.: Sparsity and smoothness via the fused lasso. Journal of Royal Statistical Society Series B 67(1), 91{108 (2005)
- Witten, D., Tibshirani, R.: Penalized classication using Fisher's linear discriminant, Journal of the Royal Statistical Society, Series B (2011)
- Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of Royal Statistical Society Series B 67(Part 2), 301-320 (2005)