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Foreword

This 9th edition of the French-Danish Workshop on Spatial Statistics and Image Analysis in Biology (SSIAB)
is jointly organized by the Biostatistics and Spatial Processes (BioSP) research unit at INRA and the statistics
group from the Department of Mathematics, LANLG at the University of Avignon.

Previous issues of this workshop were alternatively organized in France and Denmark. Attendees are from
Denmark and France, of course, but also from other Scandinavian countries, Holland, Czesh Republic, Italy,

Spain and the United States. Applications are numerous, but oriented towards biology in very broad sense.

We wish to thank Sylvie Jouslin for her contribution to the preparation of this workshop.

The organization committee
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Dimension reduction in random marked sets

V. Benes, O. Sedivy, J. Stanék

Charles University in Prague, Faculty of Mathematics and Physics, Sokolovskad
83, 18675 Praha 8, Czech Republic, benesv@karlin.mff.cuni.cz

The talk deals with spatial point, fibre and surface processes and multivariate
Gaussian random fields (GRF) as covariates. Alternatively the concept of a
random marked set from Ballani et al. (2009) will be used. The aim is to study
the dependencies between these objects and the dimension reduction problem
of covariates. We consider a generalization of the sufficient dimension reduction
paradigm for inhomogeneous spatial point processes developed in Guan and
Wang (2010). Among inverse regression techniques we concentrate on the basic
method called the sliced inverse regression. Guan (2008) claimed SIR to be
hardly applicable in point processes because of non-existence of natural slicing.
We show that slicing can be realized in spatial processes, based on suitable
geometrical marks. Basic theorems on the structure of dimension reduction
subspaces are derived for SIR. Statistical tests of independence and estimation
of the sufficient dimension are investigated. Guan and Wang (2010) refined the
analysis defining the k-th order central intensity subspace and they studied the
case k = 1 in detail. In the present paper moreover the case k = 2 is investigated
in detail and an approach to slicing is suggested.

The methods developed are demonstrated in simulations of different models
from stochastic geometry. We estimate directions in the central subspace, hy-
potheses about its dimension are tested. The quality of estimators is quantified,
the power of the tests can be evaluated in repeated simulations. First the inten-
sity of an inhomogeneous Poisson point process is proportional to a function of
a component of a multivariate GRF in R? or R3. Slicing is based on the near-
est neighbour distance. Further a Poisson Voronoi tesselation is generated by
the point process and the fibre, surface process of its edges, faces is considered,
respectively. Slicing is based on the length of edges or the surface area of faces.

Secondly the second order central intensity subspace is estimated in simu-
lations of a hard-core point process of Matern type in R2. The thinning rule is
determined by the attached GRF. Slicing of the set of pairs of events is based
on the second-order intensity.

References:

F. Ballani, Z. Kabluchko, M. Schlather (2009) Random marked sets. arXiv:
0903.2388v1 [math.PR]

Y. Guan (2008) On consistent nonparametric intensity estimation for inhomo-
geneous spatial point processes. J. Amer. Stat. Asoc. 103, 483, 1238-1247.

Y. Guan, H. Wang (2010) Sufficient dimension reduction for spatial point pro-
cesses directed by Gaussian random fields. J. R. Statist. Soc. B, 72, 3, 367-87.
0. Sedivy, J. Stanék, B. Kratochvilovd, V. Benes (2011) Sliced inverse regression
and independence in random marked sets with covariates, submitted.



EBSPAT A R PACKAGE DEDICATED TO SIMULATION AND
ESTIMATION IN THE FRAMEWORK OF (GIBBS
NEAREST-NEIGHBOUR POINT PROCESSES

Rémy Drouilhet
LJK, 1251 avenue centrale, BP 47, 38040 Grenoble Cedex 9.

The class of nearest-neighbour Gibbs point processes is interesting because it can allow us
to expand from the superstable class of Gibbs point processes introduced by Ruelle whose point
interactions are naturally based on the complete graph. It is now possible to consider point
interactions based on nearest-neighbour graphs (Delaunay graph, for example). Many theoretical
results obtained for this kind of processes have been proposed in the recent years. The first step
was to establish the existence (see [1,4] for the main contributions) of these stationary Gibbs
point processes when defined in R? (d being the dimension). The series of papers (among which
[2,3]) dealing with the estimation of stationary point processes (applicables in the framework of
nearest-neighbour Gibbs point processes) have then been submitted.

Together with the first theoretical advancement on the existence of this type of Gibbs point
processes, E. Bertin and R. Drouilhet had developed a C software program to simulate these
point processes, especially for the Delaunay, the k-nearest neighbours and Gabriel graphs. In
memory of E. Bertin, a R package, named EBSpat, is being developed in R to offer on the one hand
simulation tools for the nearest-neighbour point processes and, on the other hand, estimation
tools based on the pseudo-likelihood and Takacs-Fiksel methods.

This package now completes the comprehensive R package spatstat whose main contributor
is Adrian Baddeley. In a near future, the development of EBSpat will try to embrace the spirit
of the second version of the spatstat package (which presumably be called spatstat?2).

To have a better idea of the main functions of EBSpat, let us now discuss an example of
simulation and estimation for a Delaunay pair interaction point process. The next few lines of R
code allow the simulation of a realization of a Strauss model based on the Delaunay graph.

> gD <- EBGibbs(~ (-4.61) + Del2(th*(12<=0.0025),th=0.69),
+ center=c(1.5,1.5),size=2,sizeIn=1.5)
> run(gD) # equivalent here to "simulate"

The object gd has the EBGibbs class. The quantity 12 is predefined and corresponds to
the squared length of the Delaunay edge. The sizes of the interior and exterior domains are
respectively fixed at 1.5 and 2. The singleton potential is fixed at —4.61 and the interaction
function is that of the Strauss model based on the Delaunay graph, with the range fixed at 0.05
and the step value at 0.69. Even with this simple example, it is noticeable that the user can
easily define the shape of the interaction function that will be applied to each Delaunay edge. A
general Delaunay pair interaction of the form:

Z f(§7917"'79p) (1)

geDelz(p)

is then declared in the R system by inserting an additive term Del2(£(...) ,thetal=,...,thetaP=)
in the R formula provided as the first and main argument of the EBGibbs function. £(...) is an
R expression entered by the user (corresponding to the function f in the Equation (1)) which can
possibly depend on several parameters thetal, . . ., thetaP (related in Equation (1) to 61, --,6p)
and the following predefined characteristics :



e x: points coordinates (ex: x[[1]1] and x[[2]1][2])

e v: marks list (ex: v[[1]11$m and v[[2]]$m2)

e a, da: neigbouring Voronoi cells areas and the absolute value of their difference (ex: a[1])
e 1 12: Delaunay edge length and squared length.

e 01, 012: dual Delaunay edge length and squared length.

Now, it is now possible to offer the estimations of the two parameters of the model. Below
are the instructions for the estimations using the pseudo-likelihood method.

> peD <- EBPseudoExpo(gD~Del2(12<=0.0025) ,domainSize=1.5)
> run(peD,c(0,0) ,update=TRUE)
[1] -4.769941 0.8691488

The R function EBPseudoExpo generates a peD object. The run method provides the re-
sulting estimations. The syntax to declare the interaction differs from the one used for the
simulation since the model is here considered as an exponential family model. In this framework,
the syntax used to provide the exhaustive statistics is: Del2(£f1(...),..., fP(...)) where

2



f1(...),---fP(...) are the p R expressions of these exhaustive statistics which depend on the
same characteristics (i.e. x, v, a, da, 1, 12, ol et 012) introduced in the EBGibbs function. Let
us notice that the singleton parameter is always in the first position.

[1] Bertin, E., Billiot, J.M. et Drouilhet, R. (1999) Existence of “Nearest-Neighbour” Gibbs Point
Models, Adv. Appl. Prob., 31, 895-909.

[2] Billiot, J.-M., Coeurjolly, J.-F and Drouilhet, R. (2008) Maximum pseudolikelihood estimator
for exponential family models of marked Gibbs point processes, Electronic Journal of Statistics,
2 234-264.

[3] Coeurjolly J.-F., Dereudre, D., Drouilhet, R. et Lavancier, F. (2010) Takacs Fiksel method for
stationary marked Gibbs point processes, HAL, numéro hal-00502004 (To appear in Scandinavian
Journal of Statistics).

[4] Dereudre, D., Drouilhet, R. et Georgii, H.-0. (2010) Existence of Gibbsian point processes
with geometry-dependent interactions, Probab. Theory Related Fields 150 (2011).



Analysis of the spatial organisation of maize

vascular bundles

David Legland™®?, Marie-Francoise Devaux®, Fabienne Guillon™
[ INRA, UMR 0782 Génie et Microbiologie des Procédés Alimentaire, Thiverval-Grignon,
F-78850, France, ' Agroparistech, UMR 0782 Génie et Microbiologie des Procédés
Alimentaire, Thiverval-Grignon, F-78850, France, ! INRA UR1268 Biopolyméres,
Interaction et Assemblages, F-44300 Nantes, France

david.legland@grignon.inra.fr, [devaux, guillon]@nantes.inra.fr
Introduction

Crop species like maize are of interest for cattle feeding or for bio ethanol production.
They are transformed to energy or fuel after several mechanical, biochemical and/or
enzymatic processes. The degradability of plant material depends on its biochemical
composition, and on the structure and organisation of plant tissues. This cellular structure
is usually investigated through morphology (size, shape, orientation) of cells. The cellular
organisation within the stem of biological structures such as the vascular bundles is
however rarely investigated. The aim of this study was to quantify the spatial
organisation of vascular bundles within maize stems using methods issued from spatial
statistics.

Image Processing

Images of maize slices were obtained using a macroscopy imaging system [2]. Images
had a size of approximately 4500*4500 pixels and a pixel resolution equal to 3.62 pm
(Fig. 1-a). Vascular bundles were enhanced using alternate sequential filters [3], and
segmented by detecting extended maxima (Fig. 1-b). The position of each bundle was
defined as the centroid of the corresponding maxima. The contour of each slice was
obtained by filtering and applying a threshold to the original image. The resulting
polygon was simplified to reduce further computation time. The position of vascular
bundles as well as the contour of the stem yielded a bounded point pattern observation for
each slice (Fig. 1-c).

(b) (c)

Figure 1: Identification of vascular bundle positions. (a) Example of input image.
(b) Segmentation of vascular bundles using alternate sequential filters and extended
maxima. (b) Resulting point pattern and bounding contour.



Spatial organisation analysis

Several descriptive functions were computed for each pattern: Ripley's K-function, F-
Function, pair-correlation function [1]. All functions were computed using the same set
of input distances, allowing group wise analysis of the patterns.

Principal component analysis was applied to enhance revealed specific interaction
distances. Analyses of variance were used to detect differences between genotypes and/or
slice position within the stem.

Results

A global difference in bundle numerical density was observed between genotypes. The
pair-correlation function revealed an inhibition before 300-400 microns (Fig. 2-a). A
characteristic interaction distance was observed, approximately equal to 0.9 mm for the
wild type, and to 1 mm for the mutant.
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Figure 2 (a) Computation of average pair-correlation functions computed on all wild-
type (green) and mutant (blue) slices. (b) Classification of the images with respect to the
first two principle components of the pair correlation functions.

By applying principle components analysis on array formed by the pair correlation
functions, it was possible to discriminate genotypes (Fig. 2-b). The difference in principal
vectors reflects the difference in the interaction for distances around 1 mm.

Perspectives

Current works focus on the use of an estimate of local bundles density to improve the
estimation of descriptive functions, and on modelling of the point spatial distribution of
the within the stem using Strauss or Hardcore models. Results will be compared and
coupled with those obtained from other analytical methods, such as physico-chemical
analyses. The integration with mechanical models is also envisioned.

References

[1] A. Baddeley, R. Turner, “spatstat: An R Package for Analyzing Spatial Point
Patterns”. Journal of Statistical Software, VVol. 12 (6), 2005, pp 1-42.

[2] M.-F Devaux, B. Bouchet, D. Legland, F. Guillon, M. Lahaye, “Macro-vision and
grey level granulometry for quantification of tomato pericarp structure”. Postharvest Biol.
Technol., Vol. 47, 2008, pp. 199-209

[3] P. Soille, Morphological Image Analysis, 2nd edition, Springer, 2003



A Sequential Point Process Model
for Spatial Point Patterns with Linear Structures

Jakob Rasmussen
Aalborg University, Department of Mathematical Sciences

Many observed spatial point patterns contain points placed roughly on line segments. Point pat-
terns exhibiting such structures can be found for example in archaeology (locations of bronze age
graves in Denmark) and geography (locations of mountain tops). We consider a particular class of
point processes whose realizations contain such linear structures. This point process is constructed
sequentially by placing one point at a time. The points are placed in such a way that new points are
often placed close to previously placed points, and the points form roughly line shaped structures. We
consider Markov chain Monte Carlo based estimation for this class of point processes in a Bayesian
setup. This is exemplified by real data.



Analysis of spatial structure of epidermal nerve entry
point patterns based on replicated data

Aila Sarkka
(joint with Mari Myllyméki and Toanna Panoutsopoulou)

Epidermal nerve fiber (ENF) density and morphology are used to diagnose small
fiber involvement in diabetic and other small fiber neuropathies. ENF density
and summed length of ENF's per epidermal surface area are reduced, and ENFs
may appear more clustered within the epidermis in subjects with small fiber neu-
ropathy compared to healthy subjects. Therefore, it is important to understand
the spatial behavior of ENF's in healthy and diseased subjects. We have investi-
gated the spatial structure of ENF entry points, which are the locations where
the nerves enter the epidermis (the outmost living layer of the skin). The study
is based on suction skin blister specimens from two body locations of 25 healthy
subjects. The ENF entry points are regarded as a realization of a spatial point
process and Ripley’s K function is used to investigate the effect of covariates
(gender, age and body mass index) on the degree of clustering of ENF entry
points. The effects of covariates and individual variation are characterized by a
mixed model approach.



Statistical aspects of determinantal point
processes

Jesper Mgller, Aalborg University

Determinantal point processes are largely unexplored in statistics, though they
possess a number of appealing properties and have been studied in mathematical
physics, combinatorics, and random matrix theory. In this talk we consider statis-
tical aspects of determinantal point processes defined on R, with a focus on d = 2.

Determinantal point processes are defined by a function C' satisfying certain
regularity conditions and they possess the following properties:

(a) Determinantal point processes are flexible models for repulsive interaction.

(b) All orders of moments of a determinantal point process are described by certain
determinants of matrices with entries given in terms of C.

(c) A one-to-one smooth transformation or an independent thinning of a determi-
nantal point process is also a determinantal point process.

(d) A determinantal point process can easily be simulated, since it is a mixture of
‘determinantal projection processes’.

(e) A determinantal point process restricted to a compact set has a density (with
respect to a Poisson process) which can be expressed in closed form including
the normalizing constant.

In contrast Gibbs point processes, which constitute another flexible class of models
for repulsive interaction, do not in general have moments that are expressible in
closed form, the density involves an intractable normalizing constant, and rather
time consuming Markov chain Monte Carlo methods are needed for simulations and
approximate likelihood inference.

In the talk we describe how to simulate determinantal point processes in prac-
tice and investigate how to construct parametric models. Furthermore, different
inferential approaches based on both moments and the likelihood are studied.

The work has been carried out in collaboration with Ege Rubak, Aalborg Uni-
versity, and Frédéric Lavancier, University of Nantes.

Definition and existence

In this abstract we just state the definition of a determinatal point process on R? and
conditions ensuring its existence. Due to lack of space, the simulation procedure,
the density expression, and the statistical aspects of determinatal point processes
are deferred to the talk.

Consider a simple locally finite spatial point process X on R?, i.e. we can view
X as a random locally finite subset of R?. We refer to the elements (or points) of
X as events. The following basic notions are needed before defining when X is a
determinantal point process.



Recall that for an integer n > 0, X has n’th order product density function
p™ : R™ — [0,00) if this function is locally integrable (with respect to Lebesgue
measure) and for any Borel function A : R* — [0, c0),

4
E Z h(:vl,...,:vn)—/-~-/p(”)(xl,...,xn)h(xl,...,xn)dxl---da:n (0.1)

L1y, T €X
where # over the summation sign means that x4, ..., z, are pairwise distinct events.
Intuitively, for any pairwise distinct points 21, ..., z, € R? p™(2y,..., 2,)dz; - --dz,

is the probability that for each ¢ = 1,--- ,n, X has a point in an infinitesimally
small region around z; of volume dz;. Clearly, p™ is only uniquely defined up to
a Lebesgue nullset. We shall henceforth require that p™(zy,...,z,) = 0 if ; = x;
for some 7 # 7. This convention becomes consistent with Definition 0.1 below.

In particular, p = p(!) is the intensity function and g(z,y) = p@(z,v)/[p(x)p(y)]
is the pair correlation function, where we set g(z,y) = 0 if p(z) or p(y) is zero. By
our convention above, g(z,z) = 0 for all x € R%. The terminology ‘pair correlation
function” may be confusing, but it is commonly used by spatial statisticians. In
fact, for disjoint bounded Borel sets A, B C RY, if N(A) denotes the number of
events falling in A, then the covariance between N(A) and N(B) is the integral over
A x B of the covariance function given by c¢(z,y) = p(z)p(y)(g(z,y) — 1) for = # y.
For a Poisson point process with an intensity function p, and for x # y, we have
c(x,y) = 0, while g(z,y) = 1 if both p(z) > 0 and p(y) > 0. In spatial statistics
and stochastic geometry, ¢g is more commonly used than ¢, and we shall also pay
attention to g.

Let C denote the complex plane. For a complex number z = 2z + izp (where

21,29 € R and i = v/—1), we denote Z = 2; — izp the complex conjugate and
|z| = /2% + 22 the modulus.
For any function C' : R? x R? — C, let [C](zy,...,2,) be the n x n matrix

with (7, 7)'th entry C(z;,x;). For a square complex matrix A, let det A denote its
determinant.

Definition 0.1. Suppose that a simple locally finite spatial point process X has
product density functions

P @y, x) = det[C)(zy, .. x),  (z1,...,x,) €R™ n=1,2... (02)

Then X is called a determinantal point process with kernel C', and we write X ~

DPP(C).

Existence of a determinantal point process is ensured by the following assump-
tions on C, where S C R? denotes a generic compact set. Let C' : R x R? — C be
Hermitian, i.e. C(x,y) = C(y,x) for all z,y € R% In addition, assume that C' is
continuous. Denote L?(S) the space of square-integrable functions & : S — C and
define the integral operator Ts : L*(S) — L?(S) by

To(h)(x) = / Cle.h(y)dy, € 5.



By Mercer’s theorem, for any compact set S C R, C restricted to S x S has a
spectral representation,

Cla.y) = Y Mdn(@)nly),  (2.y) € S xS, (0.3)

with absolute and uniform convergence of the series, and where

e the set of eigenvalues {\;} is unique, each non-zero eigenvalue is real and has
finite multiplicity, and the only possible accumulation point of the eigenvalues
is 0;

e the eigenfunctions {¢;} form an orthonormal basis of L?(.9), i.e.

Ts(or) = Mk, /Scﬁk(x)mCW = { (1] ﬁ z ; 5: (0.4)

and any h € L*(S) can be written as h = Y ;- oy where o € C, k =
1,2,.... Moreover, ¢ is continuous if A, # 0.

When we need to stress that the eigenvalue \;, depends on S, we write \Y. We say
that C (or Ts) is of local trace class if tr(C) = [, C(z,z) dz is finite, i.e.

[e.9]

tr(C) = Z |AY] < oo for all compact S C R%. (0.5)
k=1

Finally, we introduce the following conditions (C1) and (C2), recalling that C' is a
complex covariance function if and only if it is Hermitian and non-negative definite:

(C1) C' is a continuous complex covariance function;
(C2) MY <1 for all compact S C R? and all k.

Theorem 0.2. Under (C1), existence of DPP(C) is equivalent to (C2).

Usually, for statistical models of covariance functions, (C1) is satisfied, and so
(C2) becomes the essential condition. As discussed in the talk, (C2) simplifies in
the stationary case of X.



Continuum Percolation in the (-skeleton Graph

J.-M. Billiot, F. Corset and E. Fontenas
LJK, FIGAL Team, BSHM, Université Pierre Mendes France,
1251 avenue centrale, B.P. 47, 38040 Grenoble cedex 9, France
Jean-Michel.Billiot@upmf-grenoble.fr

Percolation theory is very useful to describe various physical phenomena. In par-
ticular, there are important connections with phase transition problems [4, 3, 1].

The interest for percolation problems has grown rapidly during the last decades: see
Lyons and Peres [7] for percolation on trees and networks and Meester and Roy [8] for
continuum percolation and the references therein. In 1996, Higgstrom and Meester [5]
proposed results for continuum percolation problems for the k-nearest neighbor graph
under Poisson process. In a recent paper, Balister and Bollobas [2] give bounds on &
for the k-nearest neighbor graph for percolation with several possible definitions.

Kirkpatrick and Radke [6] defined a parameterized family of neighborhood graphs
called 3-skeletons. The neighborhood U, ,(8), (p and ¢ two vertices of the graph) is
defined for any fixed 3 > 1 as the intersection of two spheres:

Up.q(B) = B(p+ B8/2(q — p), Bo(p,q)/2) N B(q + B/2(p — q), B6(p,q)/2)

where J(p, q) is the distance between p and g.
The (lune-based) S-skeleton of V' (the set of the vertices of the graph) is a neighborhood
graph with the set of edges defined as follows :

(p,q)isanedge < U, ,(B) NV = 0.

These graphs includes the Gabriel graph (8 = 1) and the relative neighborhood graph
(RNG) (8 = 2) which are important for many applications.

We study the percolation for the previous graphs when the points are distributed
under a stationary Poisson point process with unit intensity in the plane. We adapted
to our case a method of the rolling ball proposed by [2] relying on 1-independent bond
percolation on Z2.
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Chromosomes, which carry the genetic information, are highly folded inside the cell
nucleus. For instance, in human cells the DNA fibers extend on about 2 meters contained
in a nucleus of a few microns diameter. Moreover it is well-known that chromosome
compaction is far from being spatially uniform. The interplay between the spatial het-
erogeneity of chromosomes and the main biological functions involving DNA (replication,
repair and RNA transcription) is an active domain of research.

By modelling, it is possible to investigate the spatial organization of chromosomes
at the level of the whole genome. So-called coarse-grain models are based on theoreti-
cal models of polymers developped by physicists (see e.g. [5, 2, 3]). In a typical model,
chromosomes are discretized into loci (from several hundred to several thousand loci).
The joint distribution of locus spatial positions is represented as a Gibbs model involving
several types of interactions. Most commonly represented interactions are springs keep-
ing consecutive loci on the same chromosome close to each other and volume exclusion
(pairwise repulsion).

For simulating such models, one resorts on random walk Metropolis algorithms. How-
ever due to the high dimension of the model, obtained simulations seem to show poor
mixing and hardly converge. For instance, Kreth et al. [2] observed that their simulated
chromosome arrangements were dependent on the initial configuration.

We consider an alternative simulation algorithm namely Langevin-Hastings algorithm
[4] which is expected to perform better for target distributions with high dimensions.
Langevin proposals try to decrease energy using its current gradient. The algorithm
involves a single parameter: a variance/covariance matrix which controls the amplitude
of displacements. Since the efficiency of Langevin-Hastings is highly dependent of the
tuning variance/covariance matrix, we consider also the adaptive strategy proposed by
Atchadé [1]. Simulation algorithms are compared through numerical experiments and
based on their autocorrelation functions.
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1 Introduction

In the past 15 years, there has been a growing interest for the study of the spatial repartition
of weeds in crops, mainly because this is a prerequisite to herbicides use reduction. There has
been a large variety of statistical methods developped for this problem ([5], [7], [10]). However,
one common point of all of these methods is that they are based on in situ collection of data
about weeds spatial repartition. A crucial problem is then to choose where, in the field, data
should be collected. Since exhaustive sampling of a field is too costly, a lot of attention has been
paid to the development of spatial sampling methods ([12], [4], [6] [9]). Classical spatial stochastic
model of weeds counts are based on Cox processes [3] or kriging [7]. In this work we propose to
deal with abundance classes and to adopt a Markov Random Field (MRF) framework.

In a companion paper [2], we present an approach for spatial sampling which is based on
MRF. This approach relies on an a priori model of the repartition of weeds in crops. It also relies
on a model of sampling costs (time spent to sample), in order to mimic field constraints. The
goal of this talk is to present the modelling choices that we have made in order to apply the
approach [2] to the sampling and reconstruction problem for a real case study with a large data
set of partial samples, in various conditions (weeds, crop, date...). In section 2 we present the
model selection study that we have performed in order to build the a priori MRF model of weeds
repartition. Then, in section 2, we present the sampling (time) cost model that we have built.
Finally, in section 4 we discuss the use of the sampling approach [2] for weeds sampling in crop
fields.

2 A MRF model of the abundance repartition of a weed
species

2.1 Candidates pairwise MRF models

Let us recall briefly the definition of a pairwise MRF distribution. Let X = (X1,...,X,,) be
discrete random variables taking values in Q™ = {0,..., K}". V = {1,...,n} is the set of indices
of the vector X and an element i € V will be called a site. If G = (V, E) is the graph associated



with the MRF, then V(x1,...,2z,) € Q",
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For modeling the map distribution of a particular weed species, we define G as a regular rectan-
gular grid representing a decomposition of the field into quadrats (which are also the sampling
units). We considered a first order neighbourhood (2 closest neighbours in each field direction).
The variable X; is the abundance class on quadrat i. For example using Barralis classes [1] :
Q={0,...,6} with 0 corresponding to the absence of the species. The choice of an appropriate
MRF model for mapping weed abundance classes distribution amounts to the choice of adapted
potential functions v; and v;;. We considered several options : Potts model with or without ex-
ternal field and with or without anisotropy. The more complex is the Potts model with external
field and with aniisotropy :

Pi(k) = ag,
V(i,j) € E,Vk,1 € Q< apij(k,1) = Blyp=y if edge (4,7) is along tillage direction
ij(k,1

where ay, Bs and 3, are real valued parameters. The three other models are derived by setting
all the as equal and/or 8; = 3,. We also considered an alternative to the Potts model, where we
impose a smooth spatial variation of the abundance classes : the order-2 potentials are modified
as follows

1) = Bolyp—y if edge (i, ) is orthogonal to tillage direction

ik, 1) = Bs(1— %) if edge (4, 7) is along tillage direction

Y(i,j) € E,Vk,l € Q <
(0,9) { i (k1) = Bo(1— %) if edge (4, j) is orthogonal to tillage direction

2.2 Model selection

The analysis was performed on 6 species, sampled in different cropping systems, at different
periods of the year. For each situation, the data available consist of samples of abundance classes
of the weed species within a crop field. We used variational versions of the EM algorithm and the
BIC criterion [8] to estimate the parameters of each of the eight candidate models and estimate
their BIC score. We obtained the following conclusions : ¢) for a large majority of situations, the
isotropic Potts model without external field is the best candidate to represent abudance maps
distribution, and i) the MRF model with smooth variation is clearly not adapted. The latter
conclusion is in coherence with results from the litterature which claim that variations of weeds
abundances are often abrupt within a crop field.

3 Cost of sampling

Sampling is adaptive and divided into H steps. One quadrat is sampled at each step. The
cost incured to sampling plan A defines the effort necessary for executing this sampling plan.
From discussions with experts, we defined this cost based on the time spent to execute A. If
A = {aq,...,ag} are the indices of observed quadrats, we suppose that the overall time cost,
denoted ¢(A), is the sum of times spent for observing each quadrat. That is ¢(A) = Zlel c(ay).
We propose a linear model which expresses the time spent for observing a quadrat as a function
of variables (Z1,...,Z5), representing respectively : the period of observation, the number of
weed individuals, the number of species, crop and farming practices. Period of observation is a



binary variable with value {favorable, unfavorable} depending of the recovery stage of the crop.
We consider five different farming practices, depending on the quantity of pesticide used. For
fitting the parameters of this model we use a 18300 length dataset which is a result of a nine-years
experiment in Dijon-Epoisses. Eight different crops have been tested. Coefficients of the linear
model were fitted using a linear regression with the software R.

4 Applying LSDP to weeds sampling

Once a model of the abundance repartition of a weed species is established, it can be used
for finding new sampling policies which realise a trade-off beetween quality of the reconstructed
map and cost of sampling. One way to compute this policy is based on the LSDP algorithm
described in [2]. The main constraint for applying LSDP to weeds sampling problems is the large
number of quadrats within a field. For now the LSDP algorithm gives interesting results for
problems with 100 quadrats which is much less than the possible number of quadrats within a
field. For exemple [11] report that the size of experimental fields usually varies between 0.019 and
173ha. The same authors report that a quadrat size varies usually between 0.025 and 1.46m?.
For solving this problem one solution is to divide the overall field into subfields and solve the
sampling problem into each subfield. Another possibility is to combine heuristic(s) strategy(ies)
and the LSDP algorithm for solving the sampling problem. This two approaches are currently
investigated.

5 Discussion

In this work, we propose an alternative to classical kriging approaches or point processes
models for representing the spatial distribution of weeds abundance. This seems to be more
adapted to the observed non smooth spatial variation of weeds abundance. We are currently
testing this hypothesis by extending our model selection work to a new candidate : the log normal
Cox process [3]. It could also be worth investigating the adaptation of our Reinforcement-Learning
approach [2] to propose sampling strategies relying on this latter model.

Then, the combination of simple heuristic strategies and more complex ones (like the LSDP
one) should lead to a promising avenue for designing spatial sampling strategies for weeds with
a satisfying trade-off between evaluation complexity and map reconstruction quality.
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1 Introduction

Optimal sampling in spatial random fields is a complex problem, which mobilizes several research
fields in spatial statistics and artificial intelligence. An active stream of research about optimal
spatial sampling is dedicated to the study of the case of real-valued observations (e.g. temperature
or pollution monitoring). Models and efficient algorithms have been proposed, mainly based on the
geostatistical framework of Gaussian random fields and kriging. Much less attention has been paid
to the case of discrete-valued observations. However, this problem is ubiquitous in many studies
about biological systems. Discrete-valued observations can be species abundance classes, disease
severity classes, presence/absence values...

Solving optimal sampling problems in discrete-valued random fields is a difficult question ad-
mitting no universally accepted solution, so far. We propose, similarly to [2, 5], to define the optimal
spatial sampling problem within the framework of Markov random fields (MRF), classically used
in image analysis. We consider the case of adaptive sampling, where the set of sampled sites is
chosen sequentially, taking into account observations from previous sampling steps. Simple heuris-
tics have been proposed [8, 1, 5] to design adaptive sampling strategies. However, it is difficult to
evaluate their quality since there is no efficient exact method to compare to. In this paper, we de-
sign a new Reinforcement-Learning (RL, [7]) algorithm which improves classical heuristic and RL
approaches, thus providing a reference algorithm. The algorithm, named LSDP (Least Square Dy-
namic Programing) uses an encoding of the optimal adaptive sampling problem as a finite-horizon
Markov Decision Process (MDP, [6]).

The MRF formalization of the optimal adaptive spatial sampling problem is introduced in Sec-
tion 2. Then, we describe the LSDP algorithm in Section 3. We present an empirical comparison
between heuristic approaches, classical RL algorithms and LSDP in Section 4. Conclusions are
drawn in Section 5.

2 Problem statement

Let X = (Xi,...,Xy) be discrete random variables taking values in Q" = {1,... K}". V =
{1,...,n} is the set of indices of the vector X and an element i € V will be called a site. The
distribution P of X is that of a Markov Random Field (MRF) with associated graph G = (V| E)
where E C V2 is a set of undirected edges. © = (x1,...,x,) is a realization of X and we adopt
the following notation: xp = {x;},cp, VB C V.

In order to reconstruct the vector X on a specified subset R C V' of sites of interest, we can ac-
quire a limited number of observations within a subset O C V of observable sites. We will assume
that R U O = V and intersection between O and R can be non-empty. Our objective is to choose
sequentially A C O so that the updated distribution P(:|z 4) becomes as informative as possible (in



expectation over all possible sample outputs x 4).

Adaptive sampling policy. The sampling plan is divided into H steps and The choice of sample
A" C O depends on the previous sample outputs. An adaptive sampling policy 6 = (d',...,5H)
is then defined by an initial sample A' and functions §" specifying the sample chosen at step h >
2, depending on previous observations: §"((A',z 41),..., (A" 1z n-1)) = A" A history is
a trajectory (A', 241),..., (A", z 4u) followed when applying policy 6. The set of all histories
which can be followed by policy § is 5.

Quality of a sampling policy. We first define the quality of a history ((Ap,x4,))n=1.1 as a
function of (A, x4), where A = U, Ap:

U(A,z4) —iGZR [max{[[”(xi | xA)}} (1)

z; €Q

The quality of a sampling policy 0 is then defined as an expectation over all possible histories:
V(0 = X ((apa, merb (@a)U (4 24).

Optimal adaptive sampling in MRF. Finally the problem of optimal adaptive sampling amounts
to finding the policy of highest quality, subjet to a cost contraint bounding the sum of the costs of
all sampled sites by B, for all trajectories in 75 :

= V(9). 2
arg&g](%f;;(B (0) (2)

3 The LSDP algorithm

The optimisation problem (2) can be solved using tools from the field of Markov Decision Processes
(MDP, [6]) and Reinforcement Learning (RL, [7]). In a MDP, at each time step ¢ an agent takes a
decision d' and the system moves from state s to state s‘*! according to p(s'*! | s, d'). A reward
7! is obtained. In the spatial sampling problem, the state is s' = {s{, ... ,s|t0|} with s! = z; if site
i has been sampled, and 0 otherwise. Decision d! is the next set of sites to sample. Rewards r! are

null, except 7+ which is equal to Y ich [maxxieg {IP(QU, | x A)}] . Then, solving (2) amounts'

to finding the optimal admissible policy §* such that V*(s,t) = V9 (s,t) > V(s,t), V4, s,t, with
Vi(s,t) = Eg [Zﬁitl rt | s} V(s ,t) € S xT..

The backwards induction algorithm [6] can be applied to compute the optimal policy. However
exact dynamic programming is inapplicable to large problems. Therefore, we have to look for sub-
optimal policies. Classical approaches are based on RL ( TD(A) [7], LSPI [4]): the idea is to use re-
peated simulated transitions (s’, d’, 7!, s**1), instead of apply dynamic programming updates, in or-
der to estimate the optimal Q— function defined as Q*(s, d, t) = r'(s,d)+>_, p'(s|s, d)V*(s', t+
1. Then V*(s,t) = maxy Q*(s,d,t) and 6*!(s) = 7*(s,t) = arg maxy Q*(s,d, t). Still, classical
RL algorithms cannot handle problems as complex as the optimisation problem (2).

The originality of the algorithm we propose is to combine three elements in order to approximate
Q*: i) a parametrized representation of the @-function with time dependent weights, i7) dynamic
programming iterations, ¢i7) and simulation of histories. Namely, we consider an approximation
of @* as a linear combination of n arbitrary features derived from the heuristic BP-max sampling
method proposed in [7]. Then, a batch of maps is simulated off-line and trajectories (sequences of
transitions) are simulated on-line. Finally, to compute the features and the quality of a history (1),
marginal distributions are approximated, using the Belief Proparation (BP) algorithm.

'Tt can be rigorously established that the two optimisation problems are equivalent



4 Experimental evaluation

We compared LSDP to the random heuristic, TD(\) algorithm with tabular representation of the
Q-function, LSPI, and the BP-max policy of [7]. The BP-max policy consists in sampling at each
step the sites with the most uncertain marginals. We also compared LSDP to a greedy algorithm
based on the Mutual Information (MI) criterion [3].

The sampling problem considered is the following. The graph G is aregular gridand R = O =
V. One variable is observed at each decision step and sampling costs are null. We considered the

following Potts model distribution: V € {1,2}" P(z) o exp (% Z(i per Yai=a;} |-

4 x 4 grid. We were able to compute the optimal policy solution of (2) and the exact value
of any policy. The first conclusion is that the absolute difference between the values of all policies
is small: an absolute increase of the percentages of 2.2 at most. We also compared the policies in
terms of scorel(d) = % (see Figure 1 (a)). Among RL algorithms, TD()) is the best and
LSDP gives very similar results. In comparaison, LSPI shows a poor behaviour, always returning
dominated policies. Surprisingly the relative value of the MI policy decreases with the number of
observed variables, while the opposite behavior is observed for the BP-max heuristic. Indeed with
few observed sites, all sites have similar marginal probabilities, leading to a purely random choice

of samples with BP-max.
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Figure 1: Comparison of LSDP, classical RL and heuristic policies (a) on a problem with 16 vari-
ables (scorel), (b) on a problem with 100 variables (score2).

10 x 10 grid. For this problem size, only LSDP, LSPI, BP-max and the random policy can be
computed. We compared them using score2(d) = v 5;})(2;3(?3( IR We observed again poor
performance of the LSPI algorithm. On the contrary, LSDP performs quite better than the BP-max
heuristic for small sample sizes (see Figure 1 (b)). LSDP also performs better than LSPI, in terms of
computation time: for H = 40, an iteration takes about 7 seconds for LSDP, 77 seconds for LSPIL.

Constrained moves problem. Finally, we compared LSDP, BP-max and random policies on a
more realistic sampling problem, involving constrained moves on the grid for observing sites. After
having observed a site, the agent can only move to distance-2 sites for the following observation. We
again observed a small absolute difference between all policies. LSPI still showed poor behaviour.
As we expected, the gain provided by LSDP in terms of relative improvement of the random policy
(H < 20) is significant when the sample size is small (Figure 2).

5 Conclusion

We proposed a MDP representation for the problem of optimal adaptive sampling of spatial pro-
cesses expressed in the Markov random field framework. This allowed us to propose an adapted
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Figure 2: Constrained moves problem with 100 variables: score2 of LSDP policy.

simulation-based solution algorithm, LSDP, combination of a parametrized representation of the
@-function and Dynamic Programming principles.

Comparison of the LSDP algorithm with heuristic algorithms and classical RL algorithms en-
ables us to draw the following conclusions. First we notice that the performance of a purely random
strategy is quite close to that of the best available solution. However, in real-life applications of
sampling for mapping, small gains in the reconstruction of maps are important since they can lead
to significant reduction in management costs.

Second, for large problems only BP-max heuristic and the LSDP algorithm provide good results.
BP-max is less costly to apply than LSDP. However, its performance depends on which form of
sampling costs are considered. We can also predict poor performances when the set of observable
variables differs from the set of variables of interest. In contrast, LSDP can handle different cost
functions. It can also easily be adapted to other definitions of policy value, provided that they can be
estimated efficiently from a batch of trajectories. Furthermore, the LSDP algorithm can be applied
to general factored finite-horizon MDP, and not only to spatial sampling problem:s.
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Abstract

Consider a random set observed in a bounded window W C R? in dis-
crete times k = 0,1, ...,T. The set is given by a union of interacting discs and
it is developed in time so that the discs appear and disappear (but do not
grow). In each time k, the set is described by the Quermass-interaction pro-
cess, i.e. the probability density of any finite configuration x = (x1, ..., )
of the discs x1, ..., x, with respect to the probability measure of a stationary
random-disc Boolean model is given by

o (60 AU + 69 L) + 0P (U
F () = exp{6; "A(Ux) + 605 L(Ux) + 65 x(U )}’ 1)

Co(k)

where A(Ux) denotes the area, L(Ux) the perimeter and x(Ux) the Euler-
Poincare characteristic of the union Uy composed of the discs from the con-
figuration x. Further, for each time k, #(%) = (6@,9&“,0&“) is a vector
of parameters and cyx) is a normalizing constant.

The temporal evolution of the random set is given by the evolution of
the parameters according to the relation

gk — g=) L (0 kL —1 2. . T, (2)

where 0(0) fixed is given and 7®) are iid random vectors with Gaussian
distribution N(a,c?I), where a € R3,0% > 0 and I is the unit matrix.



The temporal dependence in the random set is defined within its sim-
ulation algorithm. We start the simulation so that we choose a fixed (0
and according to (2), we simulate parameter vectors 0k &k =1,2,...,T.
Further, using classical birth-death Metropolis-Hastings algorithm MCMC
(see [1]), we simulate a realization xo from the density (1) with (%), Then
we simulate realizations xi, k = 1,2...,T from the density (1) with oK)
and the birth-death Metropolis-Hastings algorithm is used again, but with
a special way of adding a disc: since the realizations are aimed to be de-
pendent, the choice of a newly added disc in the algorithm depends on the
previously simulated configuration x;_1 so that the proposal distribution of
the newly added disc Propy at time k is a mixture

Prop, = (1 - p) -Prop(RP) + 06 Propgf_wip), B € (0,1),

where PropP) is a distribution of the reference process, Prop,(:_n;p ) is the
empirical distribution obtained from the configuration x;_1 and 3 is a chosen
constant describing power of time dependence. It means that (8 x 100)% of
the added discs are taken from the previous configuration and the remaining
discs are simulated randomly, so the dependence is stronger when (3 is bigger.

In this contribution, different methods for estimating the parameters
9k = («95’6), Gék), 9§k)), a = (a1,a2,a3) and o2 will be described. More
precisely, combination of MCMC maximum likelihood method described in
[2] with regression methods and particle filter studied in [3] and [4] will be
shown.
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Level sets estimation of random compact sets
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Abstract :

The present work proposes a ready to use estimator based on level sets. This
estimator approximates the mean shape or the expectation of a random set.
The concrete motivation behind this is given by pattern recognition applica-
tions arising in applied domains such as astronomy, epidemiology or image
processing.

There is no canonical definition for the mean shape of a random set. One
possible approach is the so-called Vorob’ev expectation Ey (X), which is
closely related to quantile sets. The estimator for Ey (X)) we propose is con-
sistent and is built from independent copies of X using spatial discretiza-
tion. The control of discretization errors is handled using a mild regularity
assumption on the boundary of X: a not too large ‘box counting’ dimen-
sion. Some examples are developed and applications to epidemiological and
cosmological data are presented.
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stochastic geometry, random closed sets, level sets and Vorob’ev expectation

!philippe.heinrich@math.univ-lillel.fr
2radu.stoica@math.univ-lille1.fr
3chi.tran@math.univ-lille1.fr



Pseudo Bayesian inference for

intensity-dependent point processes
Kasper K. Berthelsen, Aalborg University, Denmark
Mari Myllyméaki, Aalto University, Finland

We consider a marked point process models, which extend the models of Berthelsen &
Moller (2008), Ho & Stoyan (2008) and Myllyméki & Penttinen (2009). Specifically we
consider a marked pairwise interaction point process where interaction depends on the
mark. The mark distribution in turn depends on the intensity of the point process, where
we a priori assume that first order term of the process is given by a shot noise process.

Regarding inference we adopt a Bayesian approach. Posterior distributions are explored
using Markov chain Monte Carlo (MCMC). Since the normalising constant is unknown,
using conventional MCMC algorithms will require evaluating ratios of unknown normal-
ising constants. There exists several solution to this problem including the approaches of
Murray et al. (2006) and Mgller et al. (2006) — both of which rely on perfect simulation
of the model under consideration. As it turns out perfect simulation is not feasible, when
analysing data of practical interest in our setting. As an alternative we use a conventional
MCMC algorithm for sampling the posterior where the likelihood has been replaced by
the pseudolikelihood.

In the outset, pseudolikelihood requires integrating over the product space of the location
space and the mark space which usually involves some form of numerical integration.
Fortunately it is possible and feasible to perform the integral over the (unbounded) mark
space. We notice, as also pointed out by Rubak & Coeurjolly (2012), that the standard
Berman-Turner approach considered by Baddeley & Turner (2000) for implementing the
pseudoliklihood is intrinsically biased.

We apply our model to both real and simulated data sets.
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Statistical analysis for the Johnson-Mehl
germination-growth model
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Abstract

Second-order summary statistics play a fundamental role for analyzing spatial and
spatio-temporal point process data-sets and for model checking. In this paper the Johnson-
Mehl germination-growth model defined by a secondary space-time point process ¥ ob-
tained by a dependent thinning of a primary space-time inhomogeneous Poisson process
® is considered. We estimate parameters of specific parametric models for the conditional
intensity of ¥ using the maximum likelihood method, and we check goodness-of-fit of the
estimated model using new functional summary statistics related to the inhomogeneous K-
function and to the Palm distribution of the typical Johnson-Mehl cell. Our methodology
is illustrated using simulated and real data-set.

Key words: spatio-temporal functional summary statistics; K-function; Palm distribution, typ-
ical Johnson-Mehl cell, Voronoi tessellation, pair correlation function.



A unified framework for measuring industry location
characteristics based on marked spatial point processes

Florent Bonneu and Christine Thomas-Agnan

March 25, 2012

We propose a unified framework for defining measures of industrial concentration based on micro-
geographic data. These encompass the Duranton-Overman and the Marcon-Puech indices. We
discuss the basic requirements for such measures introduced by Duranton and Overman (2005) and
we propose five additional requirements. We describe several types of concentration depending on
the second order characteristics of the marginal patterns of positions and of marks but also on their
mutual dependence. We also discuss the null assumptions classically used for testing aggregation
of a particular sector. The framework we propose is based on some second order characteristics of
marked spatial point processes discussed in Illian et al. (2008). The general measure involves a
cumulative and a non-cumulative version. This allows us to propose an alternative version of the
Duranton-Overman index with a proper baseline as well as a cumulative version of this index.

Krugman’s theory of economic geography states that “instead of spreading out evenly around
the world, production will tend to concentrate in a few countries, regions, or cities, which will
become densely populated but also have higher levels of income.”

There are numerous motivations for studying the geographic concentration of economic sectors.
Such a measure allows to understand the determinants of localization, compare different sectors with
respect to agglomeration/dispersion and predict the evolutions of localization. A similar question is
that of co-localization and interactions between sectors for which measures can be generally derived
from the former. Another related issue is cluster detection but we do not include this problem in
the present paper.

Until 2000, all studies about geographic concentration of economic activity use areal data for
measuring spatial concentration. The localization of firms is not available and data consists only
in counts aggregated on administrative zones. There is a large literature on this topic and many
measures including the Herfindahl index, the locational Gini index (which is the Gini index of
the localization ratio), the Ellison-Glaeser index, the Maurel-Sédillot’s index and many others.
However these measures depend upon the aggregation level (Modifiable Areal Unit Problem) and
most importantly they do not take geography into account: a permutation of the sites does not
affect the measure !

A new vein of this literature arises in 2002 considering the treatment of micro-geographic data.
This type of data usually consists in the precise location of firms together with a size measure
such as the number of employees. Duranton, G. and Overman, H.G. (2005) introduce a measure
based on the distribution of inter-distances between firms. Marcon, E. and Puech, F. (2002, 2010)
introduce another measure based on Ripley’s K-function. Combes P-J., Meyer T., and Thisse J-F.
(2008) survey this literature. Espa, Giuliani and Arbia (2010) use a model-based approach to assess
concentration. Duranton et Overman (2002) list five properties that a good measure of industrial
concentration should satisfy. In this paper, we introduce five additional requirements BTA1 to
BTA5.

Note that the Duranton-Overman index as well as the Marcon-Puech index are both inspired
from the marked point process theory. However none of them corresponds to a well identified
statistical parameter. This weakness relates to the absence of clear definition of the theoretical
meaning of spatial concentration only introduced through empirical measures. We intend to fill this



gap and make progress in the understanding of spatial concentration. None of the cited measures
satisfies two of our new requirements. The last one is only satisfied by Marcon-Puech and not by
Duranton-Overman. Our index satisfied the ten requirements.
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In this work, we consider stationary Gibbs point process (sGpp) in R%. More
precisely, we consider Gibbs models such that the Papangelou conditional inten-
sity can be written for v € R? and = € Q (space of locally finite configurations
in RY) as

Mu, z3 8%) = * Au, @),

where $* > 0 is the ”Poisson intensity” parameter and where }\; is a function
from R% x © to RT. We propose to estimate 5* independently of X. For this, we
only assume that the sGpp has a finite range R < +oo (i.e. the associated Pa-
pangelou conditional intensity satisfies A(u,z; %) = A, 2p(u,r); %), for any
u € R? and z € Q), and that A(u,0) = 1. Based on a single observation of
a sGpp, denoted X, in a domain A, (a cube aimed at growing up to +oco as
n — +00), we show that the estimate 3,(X) := Na, (X; R)/Va, (X; R), where
Np, (X; R) (resp. Vi, (X; R)) is the number (resp. volume) of data points (resp.
points in A,) having no R-close neighbors in X, , is a consistent estimate of
B* for any R > R. Moreover, we prove that |An|1/2(3n — B*) converges towards
a Gaussian distribution as n — 400 with explicit variance, variance for which
we propose two consistent estimates.

We illustrate the interest and efficiency of the simple estimate we propose
in a simulation study. This work may have two further developments:

1. A stationary and isotropic pairwise interaction point process is defined by
—log A(u, X) = —logB* + > cx 9(|lv — ul|). Our estimate of 3* is the
first step to estimate non parametrically (using e.g. a kernel method) the
function g.

2. Baddeley and Dereudre (REF) developed recently a promising method
based on a variational approach to identify the model —logA(u,X) =
—log(B*) + 0'v(u, X). The main interest of their method is that an esti-
mate of 6 can be derived without using any optimization procedure. The
drawback is that 8* cannot be estimated. The estimate (3, we propose
could potentially be combined to the estimate ¢,, proposed by REF. we
should be able to derive the asymptotic normality of (8, 0y).



The following references (and the references therein) are used in this contribu-

tion.
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Two step estimation for Neyman-Scott point process
with inhomogeneous cluster centers

T. Mrkvicka!, M. Muska?, J. Kubecka?

This work has been motivated by ecological studies of spatial distribution of fish popula-
tion in an inland reservoirs. Outstanding questions that can be addressed are how the fish
interact with each other on a small scale and how fish density is influenced by recorded
covariates.

We model fish positions by the inhomogeneous Neyman-Scott process. The clusters cor-
respond to fish families or shoals which keep together (Pitcher, 1979). The models of
optimal shoal size suggest that they are homogeneous under similar environmental con-
ditions (Bertram, 1978). Therefore sizes of shoals are assumed to be homogeneous in
the investigated part of the reservoir, but the occurrence of fish shoals is assumed to be
inhomogeneous. Therefore this situation is modeled by inhomogeneous cluster centers.

Since the likelihood-based inference for inhomogeneous point process models is computa-
tionally very demanding and not straightforward to implement (Mgller & Waagepetersen,
2004, 2007, Waagepetersen, 2007), we focus on two-step estimation methods. This algo-
rithm for inhomogeneous Neyman-Scot process with second order intensity reweighted sta-
tionarity (Baddeley et. al., 2000) is described in (Waagepetersen, 2007) and (Waagepetersen
& Guan, 2009). The possibilities for two step estimation procedures applied to models
with different types of inhomogeneity were further discussed in (Prokesovd, 2010).

In the first step, the inhomogenity parameters are estimated by a Poisson log likelihood
score function (Schoenberg, 2005). In the second step, the clustering parameters are esti-
mated. Since our model is not second order intensity reweighted stationary, the method
described in (Waagepetersen, 2007) can not be applied and we thus introduce four other
estimation methods.

The first method is the minimum contrast method, where the contrast is measured on the
K-function which is modified to be homogeneous under our model.

The second method maximize the composite likelihood (Guan, 2006).

The third method is based on Bayesian principles (Mgller & Waagepetersen, 2004, 2007).
The MCMC algorithm is used to sample from the posterior distribution of the clustering
parameters. In the algorithm, the process of cluster centers is updated in each step and
the clustering parameters are also updated in each step.

Finally, the fourth method uses the Bayesian information criterion (BIC) to choose an
appropriate model. The different models are represented by different clustering parame-
ters. The likelihoods of each model, which are used in BIC, are obtained from the MCMC
algorithm. In this algorithm, only the process of cluster centers is updated in each step.

!'Department of Applied Mathematics and Informatics, Faculty of Economics, University of South
Bohemia, Studentska, 13, 37005 Ceské Budéjovice, Czech Republic (mrkvicka@prf.jcu.cz)

2Biology center of the AS CR, Institute of Hydrobiology, Na Sadkach 7, 37005 Ceské Budéjovice,
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The performance of the proposed methods is tested by a simulation study. The most
precise method is then applied onto real data derived from fisheries.
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One of the key issues in the statistical application of marked point processes
is the question of spatial correlations of the marks. Thus, mark indepen-
dence tests play a fundamental role in spatial statistics and modeling and
have been thoroughly considered in the statistical literature, see e.g. Diggle
(2003), Tllian et al. (2008). Nevertheless, some popular established tests
are not fully satisfactory and need improvement. The present talk tries to
contribute to this issue. It is inspired by Loosmore and Ford (2006), who
considered goodness-of-fit tests for non-marked point patterns and strongly
recommended the use of deviation tests instead of the popular envelope tests,
which may lead to unreasonably high type I error probabilities.

Both deviation and simulation envelope tests are Monte Carlo significance
tests (Besag and Diggle, 1977) based on some summary function F'(r), where
r in the context of the applications considered in this talk denotes distance.
It is a common situation in spatial statistics that the distribution of F(r)
is unknown, and the use of Monte Carlo simulations is the only way to test
hypotheses.

A deviation test summarizes information on F(r) in a single number and
compares it with some reference value, obtained from simulations of the
model corresponding to the null hypothesis. This Monte Carlo test (Barnard,
1963) is based on the rank of a test statistic and provides the exact type I
error probability. Here “exact” means that the null hypothesis is declared as
false, when it is true, precisely with the prescribed probability. In contrast,
in an envelope test the values of F(r) are inspected for a range of distances
simultaneously. Thus, the statistician enters the field of the “multiple testing
problem”, and the determination of the type I error probability is difficult.
Already Ripley (1977), who introduced envelope tests, mentioned that the



frequency of committing the type I error in the goodness-of-fit test based on
range of distances may be higher than for the single-distance test.

If F(r) were of interest only for a single distance, one could proceed as in
the deviation test. However, “single-distance® tests are rarely applied, since
prior knowledge of a single “interesting” distance r is untypical in practice.

Following the approach of Diggle (1979, 2003), Loosmore and Ford (2006)
adopted the deviation test, which was introduced as an alternative to the
envelope test, since it gives an easy way to adjust the testing for multiple
scales. In order to demonstrate the difficulties of the simulation envelope
test, Loosmore and Ford (2006) estimated the type I error probability by
simulation for the complete spatial randomness (CSR) hypothesis based on
the nearest neighbor distance distribution function G(r). They concluded
that it may be dangerous to make inference using conventional envelope-
based tests because the probability that the test will reject the null hypothesis
may be too high. While Loosmore and Ford (2006) considered the non-
marked case, the present talk treats the marked case where the marks can
be quantitative (continuous) as well as qualitative (discrete). In contrast
to Loosmore and Ford (2006) who did not recommend the envelope test for
inference, we show that it can be used as well as the deviation test when it
is coupled with controlling the type I error.

The talk considers both envelope and deviation tests. It demonstrates the
weakness of the envelope method and shows how it can be refined to provide
a correct statistical test. Further, deviation tests are described for mark-
independence hypotheses, and advantages and disadvantages of the tests are
discussed. The methods are illustrated by examples from forest ecology.
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Unbiased approximate pseudo-likelihood for spatial point processes
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For spatial Gibbs and Markov point processes, popular options for parameter
estimation include maximum likelihood, maksimum pseudo-likelihood and
Takacs-Fiksel estimation. However, in practice approximate versions of these
estimation methods are always used. The pseudo-likelihood e.g. contains a
two or three-dimensional integral which is approximated using numerical
quadrature.

The R-package spatstat implements a particular approximation of pseudo-
likelihood using the Berman-Turner device which allows the approximate
pseudo-likelihood to be maximized using standard procedures for general-
ized linear models (GLMs). The implementation in spatstat is very flexible
and computationally efficient and makes statistical inference for complex spa-
tial Markov point process models feasible also for users who are not experts
in spatial statistics.

When an unbiased estimating function is approximated using numerical
quadrature the approximate estimating function is typically not unbiased
and the resulting bias in the parameter estimates is difficult to quantify. In
this paper we suggest an unbiased Monte Carlo approximation of the pseudo-
likelihood estimating function. Our approach has several advantages. First,
the resulting estimates are unbiased. Second, the unbiased approximate
pseudo-likelihood estimating function takes the form of a logistic regression
score and can thus like the estimating function in spatstat easily be fitted
using existing software for GLMs. Third, the variance of the parameter esti-
mates can straightforwardly be decomposed into the sum of the variance of
the (exact) pseudo-likelihood estimate and the additional variance due to the
Monte Carlo approximation. By the third property the user can establish
how large a Monte Carlo sample is needed in order to achieve a certain level
of accuracy.

The presentation is based on joint work with Adrian Baddeley, Jean-Francois
Coeurjolly and Ege Rubak.



Modeling group dispersal of particles
with a spatiotemporal point process

Samuel Soubeyrand
Biostatistics and Spatial Processes, INRA Avignon

A stochastic model describing the dispersal of group of particles will be built and its properties will
be analyzed. This model can be viewed like a generalization of propagation models based on explicit
dispersal kernels and used in ecology and epidemiology. It can also be viewed like a doubly stochastic
spatiotemporal point process (spatiotemporal Cox process). However, because of the application field
of interest, namely population dynamics, the properties to be determined may be different from those
generally studied in stochastic geometry. Thus, in addition to study the ability of the model to generate
clusters (secondary foci), we will also calculate the probability distribution of the furthest point and
describe the resulting consequences on the invasion speed of the population modeled by the points.



Comparisons of discriminant analysis techniques for correlated data
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[ will compare a range of newly proposed techniques for performing
discriminant analysis on high-dimensional data. In particular, the techniques
differ in performance depending on the correlation structures present in data.
Highly correlated data is for example common in image analysis where pixels
values are closely related or in spectral or temporal data. The differences in the
techniques are not the various optimization criteria or variable selection
techniques, which often are emphasized in the original papers, but the choice of
estimate of the within-class covariance matrix. All of the methods build on linear
discriminant analysis (Fischer, 1936), and to further cope with the high-
dimensionality of the data, they introduce sparseness in the feature space and/or
regularization of the within-class covariance matrix.

The two methods: nearest shrunken centroids (Tibshirani et al., 2003) and
penalized linear discriminant analysis (Witten and Tibshirani, 2011), assume
independence between the variables by using a diagonal estimate of the within-
class covariance matrix. The three methods: regularized discriminant analysis
(Guo et al., 2007), sparse discriminant analysis (Clemmensen et al., 2011), and
sparse linear discriminant analysis (Shao et al.,, 2011), are able to estimate the
correlation structures in the off-diagonal of the within-class covariance matrix.
Performances are illustrated on simulated data.
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On the simple and partial Mantel tests
in presence of spatial auto-correlation

Gilles Guillot
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For the detection of clustering of cancer cases in space and time, Mantel (1967) introduced a test
based on permutations. He concluded his article by claiming that this method was general - a claim
later relayed by Sokale (1979) - and could be used whenever one has to assess the significance of
the correlation between the values of two square matrices containing distances relative to pairs of
individuals. Smouse (1986) proposed an extension of the test, referred to as partial Mantel test, and
aimed at assessing the dependence between two matrices of distances while “controlling” the effect of
a third distance matrix. Since then, and despite the fact that (or perhaps because) none of these four
original methodological papers stated the null hypothesis explicitly, the simple and partial Mantel
tests have known a tremendous popularity.

The simple Mantel test is for example used routinely to assess the significance of the association
between a matrix of genetic measurements and a matrix of phenotypic measurements relative to the
same individuals. It is also intensively used in ecology to assess how a matrix of genetic or phenotypic
distances relates to a matrix of geographical distances. The latter may contain plain geographical
(Euclidean) distances between pairs of sampling sites but it may alternatively contain values that
attempt to reflect the actual cost for an individual to move across the area (accounting e.g. for the
presence of barriers or hostile areas). In the latter case, the distance is known in ecology as “cost
distance”. It may not enjoy the properties of a mathematical distance but it is in general correlated
with the Euclidean distance. A classical analysis consists in assessing the significance of the dependence
between genetic (or phenotypic) distances and cost distances while controlling for the “effect” of
geographical distances through the partial Mantel test.

In view of the tasks above, the Mantel tests have a number of appealing features. First they
allow one to synthesize information contained in multivariate data in a single index and hence in a
single test ; second they allow one to deal with the case outlined above where the “distance” between
individuals cannot be expressed as a difference (or combination of differences) between one or several
variables (e.g. case of a cost distance) ; finally, they do not seem to rely on any parametric assumption.

The aim for this talk will be to illustrate that the Mantel tests are not valid statistical procedure
as soon as the data display spatial auto-correlation. Alternative strategies will be also discussed.



Planar Markov fields

M.N.M. van Lieshout
CWI, Amsterdam, The Netherlands

We introduce a class of Gibbs-Markov random fields built on regular tessellations that can be
understood as discrete counterparts of Arak-Surgailis polygonal fields and generalise the bivariate
fields of Schreiber and Van Lieshout (2010). We focus first on consistent polygonal fields, for which
we show consistency, Markovianity, and solvability by means of dynamic representations. Next, we
develop simulation dynamics for their general Gibbsian modifications, which cover most lattice-based
Gibbs-Markov random fields.



Inference of within cell protein interactions and spatial structure
using Fluorescence Resonance Energy Transfer microscopy

Jan-Otto Hooghoudt
Dpt. of Mathematics, Aalborg University, Denmark

Fluorescence resonance energy transfer (FRET) microscopy has become one of the preferred tools
to obtain information concerning the distribution of proteins throughout living cells. FRET is an
electrodynamic phenomenon that can be explained using classical physics. FRET occurs between a
donor molecule in the excited state and an acceptor molecule in the ground state. The main parameter
describing FRET is the FRET efficiency. It is defined as the fraction of photon energy absorbed by
donors that is transfered to acceptors.

Although the interactions between donors and acceptors are on the molecular level (1-10 nm),
the pixel resolution of FRET microscopy is typical of the order of 100x100 nm?. This implies that in
general a large number of proteins are confined within one pixel and therefor no direct information
concerning the spatial distribution of the proteins on an inner pixel level can be inferred. Previous
studies have made some progress by qualitatively state whether in some micro-domains proteins are
distributed in clusters or randomly. However, no information is available concerning typical cluster
sizes, number of clusters and type of clustering.

Zimet et al. (1995) suggested stochastic models for the physical process behind FRET and Berney
and Danuser (2003) demonstrated the validity of these models by showing that FRET data simulated
using these models agree well with experimental FRET data. An extensive quantitative survey, has
been carried out by Corry et al. (2005).

In order to obtain a complete stochastic model for FRET data we combine the FRET efficiency
model with stochastic point process models for the underlying protein configurations (e.g. multi-Strauss
hardcore model). Due to the complicated nature of the stochastic models involved the corresponding
likelihood function is intractable.

In this talk I will give a short introduction to FRET, show results obtained from simulations and
discuss approaches to do statistical inference on experimentally obtained FRET datasets in order to
estimate parameter values for the supposed underlying theoretical point process model.



Detecting fake paintings

Robert Jacobsen
Aalborg University, Department of Mathematical Sciences

It was probably not long after people started buying paintings that a business in forging paintings
was born which initiated the need for detecting forgeries. This task of determining if a painting is
indeed painted by the claimed artist, i.e. is authentic, is called authentication.

Authentication has traditionally been performed by connoisseurs which employ a wide range of
tools to establish physical properties of the painting, e.g. the age of the materials and the type of paint
used. Furthermore, visual characterisations, e.g. determining if the sweeps of the brush resembles those
in other works of the painter, are sought to see if the painting ”fits” into the style of the painter. In
many cases the brushstrokes/lines in a painting/drawing are believed to be characteristic of an artist,
like an artistic signature.

The judgment of the visual characteristics are mainly subjective, as they are decided by a few
experts who are steeped in the style of the concerned artist. It is therefore of interest to aid the tradi-
tional authentication of paintings by unbiased and objective analyses. The topic of this presentation
is to present recent results in the field of authentication based on analysing digital reproductions of
paintings by mathematical methods.

Using tools from harmonic analysis we can extract high frequency details from digital reproductions
that includes lines and brushstrokes. By modelling such details appropriately we are able to distinguish
authentic images from forgeries.



Simulating the tail of the interference in a Poisson network model

Giovanni Luca Torrisi* and Emilio Leonardif

1 Extended Abstract

1.1 Introduction

Mutual interference among simultaneous transmissions constitutes the main limitation factor to
the performance of dense wireless networks, severely reducing the capacity of the whole system
(see [14], [16], [17], [19] and [20].)

The availability of efficient analytical /numerical techniques to tightly characterize the interfer-
ence produced by transmitting nodes operating over the same channel is a key ingredient to better
predict performance of such complex systems as well as to design new Medium Access Control
(MAC) protocols and more advanced transmission schemes that better exploit the system band-
width. Just as matter of example, we shall explain how the tail of the interference is directly related
to the probability that the communication does not succeed, in the case when a single input/single
output transmission scheme is adopted.

In this talk we shall consider a simple wireless network setting in which nodes are placed
according to a Poisson process on the plane and employ a simple ALOHA MAC protocol (see [1],
(3], [4], [5], 6], [8], [9], [10] and [15]). We propose a provably efficient numerical methodology to
estimate the tail of the interference, under natural assumptions on fading and attenuation. If the
tail of the interference is not too small, one may exploit a crude Monte Carlo approach to evaluate
the complementary of the cumulative distribution function of the interference. However, when the
tail of the interference is small the crude Monte Carlo method becomes inefficient, and different
numerical techniques are needed. The methodology we shall use is based on (state-dependent)
importance sampling (see e.g. [2] and [7].) Despite of the fact that a significant body of work
has attempted a characterization of the interference in large wireless networks (see [1], [3], [4],
[5], [6], [8], [9], [10], [11] and [15]), we are not aware of previous work proposing provably efficient
numerical algorithms to estimate the tail of the interference, assuming that the fading has a light-tail
distribution and the attenuation decays sub-exponentially with the distance. Actually, most of the
existing literature on the subject focuses on analytical characterizations of either the interference
distribution or the outage probability, under specific assumptions on fading and attenuation. For
instance, if the attenuation is of the form ||z||~®, z € R?, a > 2, where the symbol || - || denotes
the Euclidean norm, and the fading is constant (i.e. there is a purely geometric attenuation) or
distributed according to a Rayleigh law, closed form expressions for the Laplace transform of the
interference are derived e.g. in [1], [4] and [15]. However, only in exceptional cases the Laplace
transform may be inverted to obtain the law of the interference. This is possible, for instance, if
a = 4 and the system is subjected to a purely geometric attenuation [11]. Under more general
assumptions on fading and attenuation, explicit bounds on the tail of the interference may be
found in [11]. In [10] a large deviations approach is employed to study the asymptotic behavior

*Istituto per le Applicazioni del Calcolo ”Mauro Picone”, CNR, Via dei Taurini 19, I-00185 Roma, Italia. e-mail:
torrisi@iac.rm.cnr.it
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leonardi@polito.it



of the logarithm of the tail of the interference, for a quite general fading (possibly heavy-tail) and
ideal Hertzian propagation, i.e. of the form max(R,||z||)~®, R > 0, « > 2. The results in [10]
constitute the starting point to build provably efficient numerical algorithms to estimate the tail of
the interference.

Under general assumptions on the nodes distribution, the fading distribution and the attenu-
ation function, asymptotic estimates for the outage probability, as the intensity of the nodes goes
to zero, are derived in [12] and [13]. Finally, a Monte Carlo algorithm to estimate the density of
the interference for a quite general wireless network model has been proposed in [18].

The methodology proposed in this talk complements the previously mentioned results, providing
an efficient and accurate Monte Carlo algorithm to compute the tail of the interference in cases
where the analytical approach is not feasible. We believe that the proposed methodology may
yield hints for a successive development of Monte Carlo procedures that allow fast and accurate
evaluations of the tail of the interference when the transmitting nodes are distributed according to
more general point processes models.

1.2 The system model and organization of the talk

We consider the following simple model of multi-hop wireless network, which accounts for interfer-
ence effects that arise when several nodes transmit at the same time.

Suppose that transmitting nodes (antennas) are located according to a Poisson process { X }x>1
on the plane with a locally integrable intensity function A(z), = € R2, i.e. X, is the location of
node n. Denote by P, € (0,00) the transmission power of node n. Assume that a new receiver is
added at the origin and that a new transmitter is added at = € R2.

Let w be a positive constant which describes the thermal noise at the receiver, and suppose
that the physical propagation of the signal is described by a measurable positive function L : R? —
(0,00), which gives the attenuation or path-loss of the signal. In addition, the signal undergoes
random fading (due to occluding objects, reflections, multi-path interference, etc.). We denote by
H,, the random fading between node n and the receiver, and define Y;, := P, H,. Thus Y,,L(X,)
is the received power at the origin due to node n. Similarly, we denote by Y L(z), the received
power at the origin due to the transmitter at . We assume that {Y,{Y;}r>1} is a sequence of
independent and identically distributed (i.i.d.) random variables (r.v.’s), independent of locations.
In the following (with an abuse of terminology) we shall call the r.v.’s Y}, signals.

In this talk we shall provide a computationally efficient (state-dependent) importance sampling
algorithm for the characterization of the total interference at the origin, which is given by the
Poisson shot noise r.v. V := 5", Y, L(X}). We emphasize that a tight characterization of the tail
of the interference ¥(8) := P(V > B) is needed to predict the performance of large scale wireless
networks. In particular, the tail of the interference is related to the probability of successfully
decoding the signal from the transmitter at . Indeed, given the adopted modulation and encoding
scheme, we can claim that the receiver at the origin can successfully decode the signal from the
transmitter at x if the Signal to Interference plus Noise Ratio (SINR) is greater than a given
threshold, say 7 > 0 (which depends on the adopted scheme), i.e.

> 71, almost surely (a.s..)

So, conditional to the event {Y = y}, the probability that the communication succeeds is given by

P <m > 7 ‘ Y = y> —p <ZLJ£‘”& > 7‘) = P(V < yL(z)r! —w). (1)

The attenuation function is often taken to be isotropic (i.e. rotation invariant) and of the form
L(z) = £(||z|]) = ||lz||”* or (1 + ||z||)~* or max(R,||x|)~%, where @ > 2 and R > 0 are positive



constants. Setting 7 = 07’ in (1), where § > 0 and 7/ > 0 are two positive constants, we have

The high-reliability regime corresponds to the high-SINR regime, i.e. the regime where 7/ — 0 (see
[12] and [13] for the analysis of the high-SINR regime as the intensity of the nodes goes to zero.)
Thus, for large values of 3, the probability (/) is also related to the outage probability in the
high-SINR regime.

Note that whenever V' < oo a.s. (a sufficient condition for this is e.g. E[V] < o0, i.e. E[Y]] < 00
and [po L(x)A(z)dz < 00), 9(B) — 0, as B — 400, so the event {V > S} is rare as (§ increases,
and this rises questions about the numerical estimation of the small probabilities ¢(5) via a Monte
Carlo algorithm. The importance sampling technique which will be proposed in this talk can be
successfully used to obtain accurate estimates of ¥ () for values of 5 that correspond to small
¥(B) (note that such values of § may be moderately large.) This permits to unveil how different
system’s parameters, such as the intensity of the nodes, the path-loss exponent and the fading
distribution, impact on the system performance. For these reasons, we believe that our approach is
complementary with respect to the previously proposed analytical approaches that capture either
the asymptotic behavior, as 5 — oo, of the tail of the interference ([10]) or the asymptotic behavior,
as the intensity of the nodes goes to zero, of the outage probability ({12, 13].)

The talk will be structured as follows: (i) we shall describe networks with nodes distributed ac-
cording to a stationary Poisson process on R? with intensity function A(-) and attenuation function
of the form L(z) = £(||z||) = max(R, ||z]|)~%, o > 2, R > 0; (i7) we shall describe the importance
sampling methodology in this context; (iii) we shall provide asymptotically admissible simulation
laws for ¥(3), as B — 400, under a quite general light tail assumption on the distribution of the
signals; (7v) we shall give asymptotically efficient simulation laws for ¢ (), as 8 — +o00, when the
signals are bounded, Weibull super-exponential or Exponential; (v) we shall discuss some numerical
illustrations.
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Functional Median Polish, with Climate Applications

Marc G. Genton
Department of Statistics, Texas A&M University

We propose functional median polish, an extension of univariate median polish, for one-way and
two-way functional analysis of variance (ANOVA). The functional median polish estimates the func-
tional grand effect and functional main factor effects based on functional medians in an additive
functional ANOVA model assuming no interaction among factors. A functional rank test is used to
assess whether the functional main factor effects are significant. The robustness of the functional me-
dian polish is demonstrated by comparing its performance with the traditional functional ANOVA
fitted by means under different outlier models in simulation studies. The functional median polish is
illustrated on various applications in climate science, including one-way and two-way ANOVA when
functional data are either curves or images. Specifically, Canadian temperature data, U.S. precipita-
tion observations and outputs of global and regional climate models are considered. This is based on
joint work with Ying Sun.



Inferring epidemiological parameters of space-time dynamics of apple scab
in orchards

Senoussi R.!, Parisi L. and Gros C.
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Summary

Apple is a major fruit crop worldwide and scab, caused by
Venturia inaequalis, is its most common fungal disease. Its control is based
on intensive use of fungicide sprays. Pertinent mixtures of resistant and susceptible cultivars
could help to reduce fungicide use.

In 9 experimental apple orchards in Gotheron (South of France), 3 of pure
(susceptible) and 6 of mixed (susceptible + resistant), leaf infections were observed at random
times during nearly 2 months after an initial artificial inoculation was performed. We consider
here a time-space model in vegetal epidemiology for fungus dispersal within the two types of
orchards. Fungus epidemics depend on many factors and particularly on climatic conditions
and spatial characteristics. Climatic conditions, mainly temperature and humidity, can be
viewed as the effective variables controlling the specific time schedule of fungus dynamics.
Similarly, spatial components must be given taking into account the field characteristics (
(void space, vegetal screens, etc...).

To describe the Venturia inaequalis epidemics, we first discretize space into square
regular cells allotted with specific characteristics whereas time is divided into climatic units.
We, then, proposed a time-Markovian and multidimensional (for space cells) process for
statistical inference. More specifically, an orchard is considered as set of N cells C; centered
on ¢i=(x; , yi) and characterized by epidemic index (V=void, S=susceptible region, R=resistant
region). Conditional distributions simply assert that if a fungus spot located at ¢; with intensity
I; is present at a proper “time” t, it supposedly delivers during an epidemiological time unit a
Poisson number of spores on a site C; with a mean defined via a dispersal kernel.

After an incubation period, spores give rise to new fungus spots that disperse additively with
the same rules and independently of each others, etc...

Considering first the space time variables, we considered the intrinsic observation
times which were irregular and random as Markov stopping times defined by climatic
conditions. Then, we defined for fungus dispersal, the epidemiological spatial distance
between two points as the sum of the weighted lengths of the segments delimited by the
different crossed cells. We then adopted a classical parametric model for statistical inference.
We introduced 1 parameter a, for a uniform base intensity for leaf infection, 2 parameters (as
and ag) to describe the cell characteristics, ie the resistivity to displacement (ay=1 being the
reference) and the epidemiological distance, 1 parameter for the dispersal range of a spot and
1 parameter o, for the dispersal intensity which roughly describes the mean number of
effective spores attaining a cell at one distance unit, and finally 1 parameter ar for
time/climate unit. This set of parameters makes it possible to test some sensible
epidemiologic hypotheses such as the pertinence of alternating resistant and susceptible
cultivars in orchards and to estimate quantitatively the effect of climatic variates.



Identification of local multivariate outliers
Peter Filzmoser', Anne Ruiz-Gazen? and Christine Thomas-Agnan®

Multivariate outlier detection belongs to the most important tasks for the sta-
tistical analysis of multivariate data. Multivariate outliers behave differently than
the majority of observations which are assumed to follow some underlying model
like a multivariate normal distribution. The deviations of outlying observations
from the majority of data points can also be understood in an exploratory con-
text, for example by visualizing a measure describing outlyingness and inspecting
possible deviations or gaps in the resulting plot.

The most commonly used measure of outlyingness is the Mahalanobis dis-
tance. This multivariate distance measure assigns each observation a distance to
the center, taking into account the multivariate covariance structure. Practically,
for obtaining a reliable distance measure for multivariate data it is crucial to es-
timate robustly the center and the covariance from the data. A frequently used
robust estimator of multivariate location and scatter is the Minimum Covariance
Determinant estimator which looks for a subset of observations with smallest de-
terminant of the sample covariance matrix.

The distance measure for multivariate outlier detection does not account for
any spatial dependence among the observations. Moreover, it is limited to identify
overall, “global” outliers that differ from the main bulk of the data, but not outliers
in a local neighborhood. Interestingly, spatial or “local” outliers are most often
also outlying according to the spatial dependence. Usually, it turns out that spatial
data sets contain positive spatial autocorrelation which means that observations
with high (respectively low) values for an attribute are surrounded by neighbors
which are also associated with high (respectively low) values. Thus, in a positive
autocorrelation scheme, observations that differ from their neighbors do not fol-
low the same process of spatial dependence as the main bulk of the data. Graphics
such as the variogram cloud and the Moran scatterplot are interesting tools for
detecting local outliers in a univariate framework. However, up to our knowledge
very few proposals have been made in the multivariate context.

The main objective of the present paper is to introduce new exploratory tools
in order to detect outliers in multivariate spatial data sets. Our purpose is also to
illustrate that if global outliers are present in the data set, they are usually also
local outliers and they can completely mask other local outliers. The exploratory
tools we introduce do not only detect both kinds of outliers but also give an insight
into their global or/and local nature.
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Combining probabilities with log-linear pooling : application to
spatial data
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New South Wales, Sydney, Australia. a.comunian@unsw.edu.au
3 CHYN, Université de Neuchdtel, Neuchdtel, Suisse. Philippe.RenardQunine.ch
4 Ephesia-Consult, Brussels, Belgium. dimitri.dor@ephesia-consult.com

The need of combining in a probabilistic framework different sources of information
is a frequent task in management, environmental and earth sciences and spatial statis-
tics. The problem of aggregating these different conditional probability distributions into
a single conditional distribution arises as an approximation to the inaccessible genuine
conditional probability given all information, since building a full probabilistic model is
in general impossible. This paper makes a formal review of most aggregation methods
proposed in the literature with a particular focus on their mathematical properties. Cali-
bration fo the agregated probability distribution is of particular importance. It is known
that linear agregation operators are not calibrated. Here, we show that the log-linear
agregation operator with parameters estimated from maximum likelihood is calibrated.
An application with spatial data illustrate the performance of these operators.
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Some contributions for second order scalar or vector valued
random fields

Emilio Porcu

Universidad Castilla la Mancha, Department of Statistics

Scalar and Vector—valued random fields (RFs) have received an increasing interest in
the last thrty years from several scientific areas. When the finite dimensional distribution
of the RF is Gaussian, then only second order properties matter for statistical inference. In
particular, weakly and intrinsically stationary Gaussian RF’s properties are specified through
the properties of their associated (respectively) covariance or variogram functions. In this talk
we shall present a personal selection of contributions from the last four years or research. In
particular, for space-time scalar valued RF's, we show (a) that Gneiting’s (2002) conditions are
not only sufficient, but also necessary; (b) we relax the hypothesis on the involved functions
and (c¢) we give necessary conditions when the generator of the space—time covariance is
compactly supported on the unit sphere. For the case of scalar—valued RFs, we show that
some classes of variograms are closed under product, completing a part of the literature built,
for over 40 years, that variograms do not preserve permissibility under product. For vector—
valued RFs, we show some important criteria of construction that are proved to be useful for
implementing new matrix—valued covariance and correlation functions. We also find a class
of functions that is compactly supported and another that allows for hole effects.
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