A Stochastic Space-time Model for Intermittent Precipitation Occurrences

Ying Sun Environmental Statistics Group es.kaust.edu.sa King Abdullah University of Science and Technology

Joint work with Michael Stein from the University of Chicago (E) E 🔊

Stochastic Weather Generators

- Stochastic weather generators:
 - Provide fast and realistic simulations of atmospheric variables.
 - Facilitate understanding the probabilistic structure.
 - Required by impact studies.
- Note:
 - Statistical models, not forecast models.
 - Reproduce reality accurately in a distributional sense.
 - Different from climate numerical models.
- Precipitation has been a key variable of interest.
 - Serves as input into hydrologic and agricultural models.

Features of Precipitation Field

- Intermittent nature and high variability.
- Spatio-temporal dependence.
- Precipitation statistics are strongly scale dependent.
 - Data are measured as averages over space-time scales.
- Rainfall zeros: precipitation occurrences.
 - Especially for small time scales.
 - Contribute significantly to the observed dependence.
 - An important component in stochastic weather simulations.
- Intensity: non-Gaussian.

Our Contributions

- Consistent model for precipitation occurrences:
 - Shorter time scale: 15-minute rain gauge data.
 - Generate realistic spatio-temporal dependence.
- Model framework:
 - Truncated spatio-temporal non-Gaussian random field model.
- Model diagnostics:
 - Define meaningful precipitation statistics.
 - Develop visualization methods for the assessment of spatio-temporal dependence.
- Model assessment is important.
 - Reproducing means of the precipitation.
 - ► Reproducing "higher moments": dependence.

Gauge Locations

Rain Gauge Data

- High-frequency gauge-based space-time data:
 - ▶ Time records of each bucket tip (0.01 inches) at each location.
 - ▶ 12 Gauges from 05/19/2004 to 05/17/2007.
 - Aggregate to different time scales.
 - ► Unit: mm/hr.
- Percentage of rain for different time scales:

Time	10-min	15-mi	n 30-m	in 1-hr	3-hr
Occurrence	1.77	2.55	4.91	. 6.47	10.42
Time	6-hr	1-day	1-week	1-mon	3-mon
Occurrence	14.77	32.72	88.57	99.76	100

Truncated Model

▶ Bell (1987): the truncated Gaussian random field model

$$W(\mathbf{x}) = egin{cases} f(Z(\mathbf{x})), & Z(\mathbf{x}) > c; \ 0, & Z(\mathbf{x}) \leq c. \end{cases}$$

- Stein (1992) considered Monte Carlo methods for prediction and inference for truncated spatial data based on this model.
- For 15-minute rain rates:
 - The value of c is high.
 - GRF has thin tail distributions.
 - The probability of exceeding *c* at many locations is low.
 - It may not be sufficient to describe the dependence in the occurrence.

More Flexible tRF

- t random field model (Røislien and Omre, 2006) is specified by
 - Mean function: $\mu(\mathbf{x})$.
 - Positive definite scale function: $\kappa(\mathbf{x}, \mathbf{x}')$.
 - The degrees of freedom: ν .
- The tRF tends towards a GRF as $\nu \to \infty$.

Representation of Spatial tRF Model

Univariate t random variable has the representation

$$T=\frac{Z}{\sqrt{V/\nu}}.$$

• T has a heavier tail due to the random scaling $\sqrt{V/\nu}$.

Similarly, the multivariate t random vector for n locations

$$\mathbf{Y} = \boldsymbol{\mu} + rac{\mathbf{Z}}{U}, \quad \nu U^2 \sim \chi^2(\nu).$$

- Given U = u, $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Omega}/u)$.
- The variability across realizations of **Y** is larger.
- ► A higher probability that **Y** exceeds *c* at many locations.
- tRF tends towards GRF as $\nu \to \infty$.

Bivariate Illustration

 $P(Y_2 > c | Y_1 > c)$: $\nu = 3, \infty$ and $\rho = 0.3, 0.5, 0.7$.

Precipitation Statistics

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Define the dry and the rain event:

$$D(\mathbf{x}) = \{Y(\mathbf{x}) \leq c\}, \quad R(\mathbf{x}) = \{Y(\mathbf{x}) > c\}.$$

- Precipitation statistics:
 - Marginal dry: $p_D = Pr(D(\mathbf{x}))$.
 - Marginal rain: $p_R = Pr(R(\mathbf{x})) = 1 p_D$.
 - Conditional dry: $p_{D|D} = Pr(D(\mathbf{x})|D(\mathbf{x}'))$.
 - Conditional rain: $p_{R|R} = Pr(R(\mathbf{x})|R(\mathbf{x}'))$.

Conditional Dry Probability Plot

Conditional Rain Probability Plot

Comparing Model Simulations

- Purely spatial truncated tRF models with zero-mean.
- Degrees of freedom: $\nu = 3, 5, 7, \infty$.
- The marginal dry probability: 97.5%.

Space-time tRF Model

$$Y(\mathbf{x},t) = rac{Z(\mathbf{x},t)}{U(t)},$$

• $\nu U^2(t)$: a stationary Gamma process, where

$$U^2(t) = rac{1}{
u} \sum_{j=1}^{
u} X_j^2(t),$$

▶ $X_j(t)$'s are i.i.d. zero-mean stationary Gaussian processes.

- For any given time $t = t^*$,
 - $\nu U^2(t^*)$ is χ^2_{ν} distributed.
 - ▶ It follows that $Y(\mathbf{x}, t^*)$ is a spatial tRF. \Box → $\langle \overline{D} \rangle$ $\langle \overline{D} \rangle$ $\langle \overline{D} \rangle$ $\langle \overline{D} \rangle$

Simulated U(t) Process

Temporal range parameter $\alpha_u = 0.5$, $\nu = 3$.

Spatio-temporal Covariance Function

 Stein (2005): spectral-in-time representation of K for data EnvStat taken regularly in time at a modest number of sites,

$$\mathcal{K}(\mathbf{x},t) = \int_{\mathbb{R}} S(\omega) C\Big(|\mathbf{x}|\gamma(\omega)\Big) e^{i\mathbf{u}'\mathbf{x}\theta(\omega)+i\omega t} d\omega.$$

- All the functions have natural interpretations.
- Parameterization for even positive functions:

$$\log\left\{\gamma(\omega)\right\} = \sum_{k=0}^{L} a_k \cos(k\omega),$$
$$\log\left\{S(\omega)\right\} = -\beta \log\left(\sin\left|\frac{1}{2}\omega\right|\right) + \sum_{\substack{k=0\\ \alpha \in \mathcal{A}}}^{L} c_k \cos(k\omega).$$

Parameters

Parameters of interest are:

- α : the spatial range in C (Matérn).
- β : measures the long-range time dependence in S.
- α_u : dependence range in the U(t) process.
- ν : degrees of freedom.

Application to Rain Gauge Data

- Conditional probability plots for four seasons from Summer 2004 to Spring 2007.
- Look for patterns of the precipitation occurrences:
 - Precipitation over a larger region and/or last longer time.
 - Local storms.

El Niño Years?

- ▶ The years 2004 and 2006: weak El Niño years.
- The study region is not typically affected by the El Niño effect in terms of total precipitation; How about spatial patterns?

Model Fitting

- Empirical approach: based on Monte Carlo simulations.
 - Minimizing the difference of the conditional probabilities obtained from the model and from the observations.
- The estimates of $(\alpha, \beta, \alpha_u, \nu)$ for Summer 2004-2006.

Year	â	\hat{eta}	$\hat{\alpha}_{u}$	ŵ
2004	0.485	0.486	0.199	4
2005	0.495	0.558	0.232	5
2006	0.500	0.652	0.175	3

- Summer 2006:
 - $(\hat{\alpha}, \hat{\beta}) = (0.811, 0.123)$ for the truncated GRF model.
 - ► The estimate of the spatial range parameter is much larger.

Model Diagnostics: Summer 2006

 Compare the conditional rain probabilities by the functional EnvStat boxplot (Sun and Genton, 2011).

Consistent Spatio-temporal Model

Another important aspect: wet or dry spell.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ つ

- Temporal dependence is necessary to produce them correctly.
- From a statistical modeling point of view
 - It is desirable to have a consistent space-time model to produce precipitation features at different scales.
 - Rather than to have a separate model for each scale.
- In order to produce the desired rain or dry spells at larger scales through aggregation
 - Need to characterize the complex dependence structure precisely at small space-time scales.
- We can use aggregation to assess model performance.

Model Diagnostics: Summer 2006

Aggregate to hourly data

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Computation

Estimation:

- Generate data at 12 locations and 8736 time points.
- Circulant embedding techniques.
- ► FFT for fast and exact simulations (Wood and Chan, 1994; Helgason et al., 2011).
- Simulation on a grid.

Discussion

- A stochastic space-time model for precipitation occurrence:
 - Truncated tRF model with random scaling U(t).
 - The increased variability is useful for shorter time scale.
- Model assessment:
 - Conditional probability plot, and aggregation.
 - ▶ Functional boxplot: the fast algorithm (Sun et al., 2012).
- Precipitation intensity:
 - More complete analysis: includes the positive rainfall amounts.
 - Investigate Bayesian inference methods.