Variability of wind speed encountered by a vessel

Igor Rychlik
Acknowledgments to: A. Baxevani, A. Borget, S. Cairres, W. Mao, K. Podgórski, A. Tual, R. Wilsson.

Wind speed $W(\mathbf{p}, t)$ model

Brown et al. (1984) $W(\mathbf{p}, t)^{a(\mathbf{p})}=X(\mathbf{p}, t)$.
Assumption: X is locally stationary, for couple of weeks and in radius of few degrees.

Application for computations of:

- long-term cdf of encountered wind speeds;
- strength and duration of encountered storms;
- simulation of encountered winds.

Parameters $\mu=E[X(\mathbf{p}, t)]^{1 / a(\mathbf{p})}, \sigma=\operatorname{Var}(X(\mathbf{p}, t))^{1 / 2}$

Median wind speed [m/s] in August

Standard deviation of X in February

Standard deviation of X in August

Duration of windy weather at fixed position and time, i.e. average time between upcrossing and the following downcrossing of the median wind -

$$
\tau(\mathbf{p}, t)=\pi \sqrt{\frac{\operatorname{Var}(X(\mathbf{p}, t))}{\operatorname{Var}\left(X_{t}(\mathbf{p}, t)\right)}}
$$

τ [days] in August

Long term cdf at fixed position \mathbf{p}, T one year,

$$
P(W \leq w)=\frac{1}{T} \int_{t}^{t+T} \Phi\left(\frac{w^{a(\mathbf{p})}-m(\mathbf{p}, s)}{\sigma(\mathbf{p}, s)},\right) d s
$$

$m(\mathbf{p}, s)=E[X(\mathbf{p}, s)]$

Other wind characteristics at fixed location p, e.g. buoy

- $\{s \in[t, t+T]: W(\mathbf{p}, s) \geq u\}$ - storms (safety),
- $t_{i}, T_{i}^{s t}, A_{i}^{s t}$ - time when i^{\prime} th storm starts; its duration and height.
- $P\left(A^{s t}>w\right)=\frac{E\left[\#\left\{A_{i}^{s t}>w\right\}\right]}{E\left[N_{T}(u)\right]} \leq \frac{E\left[N_{T}(w)\right]}{E\left[N_{T}(u)\right]} 1$
- $P\left(T^{s t}>t\right)=\frac{E\left[\#\left\{T_{i}^{s t}>t\right\}\right]}{E\left[N_{T}(u)\right]}$ (WAFO toolbox), $\quad E\left[T^{s t}\right]=\frac{P(W>u)}{E\left[N_{T}(u)\right]}$
${ }^{1} E\left[N_{T}(u)\right]=\int_{t}^{t+T} \frac{1}{2 \tau(\mathbf{p}, s)} e^{-\frac{\left(u^{2(\mathbf{p})}-m(\mathbf{p}, s)\right)^{2}}{2 \sigma^{2}(\mathbf{p}, s)}} d s$

	$u=15 \mathrm{~m} / \mathrm{s}$				$u=18 \mathrm{~m} / \mathrm{s}$			
position	$E\left[T^{s t}\right]$	$\bar{T}^{s t}$	$E\left[T^{c l}\right] \bar{T}^{c l}$	$E\left[T^{s t}\right]$	$\bar{T}^{s t}$	$E\left[T^{c l}\right]$	$\bar{T}^{c l}$	
$(-20,60)$	0.6	0.5	4.4	4.2	0.5	0.4	13.	11
$(-10,40)$	0.3	0.4	56	69	0.3	0.3	514	525
$(-40,50)$	0.6	0.5	4.4	4.2	0.5	0.4	12	11
$(-20,45)$	0.6	0.5	11	13	0.4	0.4	46	57

Table : Long term (one year) expected storm/calm durations in days.

Figure : Comparisons of estimates of long-term probability that wind in a storm exceeds $u, \mathbb{P}\left(A^{s t}>w\right), u=15[\mathrm{~m} / \mathrm{s}]$, during one year

Connecting time and space

Σ - covariance matrix of gradien, 6 parameters at each location. These have following physical interpretations.

- θ - main direction of propagation, rotation making $\left(X_{x}, X_{y}\right)$ uncorr, Σ_{θ} - covariance matrix in the rotated coordinate system. by angle θ.
- $v_{\theta}=-\frac{\operatorname{Cov}\left(X_{t}^{\theta}, X_{x}^{\theta}\right)}{\operatorname{Var}\left(X_{x}^{\theta}\right)}$ - average speed in direction θ.
- $v_{\theta-90^{\circ}}=-\frac{\operatorname{Cov}\left(X_{t}^{\theta}, X_{y}^{\theta}\right)}{\operatorname{Var}\left(X_{y}^{\theta}\right)}$ - average speed in direction $\theta-90^{\circ}$,
- $L_{\theta}=\pi \sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}\left(X_{x}^{\theta}\right)}}$ average length of windy region in direction θ
- $L_{\theta-90^{\circ}}=\pi \sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}\left(X_{y}^{\theta}\right)}}$ average length in direction $\theta-90^{\circ}$
- $\tau=\pi \sqrt{\frac{\operatorname{Var}(X)}{\operatorname{Var}\left(X_{t}\right)}}$ average period of the windy weather

Average velocity of storms movement

Figure: In the figures max speed is about $44 \mathrm{~km} / \mathrm{h}$ and minimum $0 \mathrm{~km} / \mathrm{h}$ Storm velocity in rotated coordinate system $\mathbf{v}^{s t}=\left(v_{\theta}, v_{\theta-90^{\circ}}\right)$.

Average period of sailing in windy weather τ^{e}

- A rout defines by speed $v^{\text {sh }}(s)$, azimuth $\alpha(s)$. Then encounter wind velocity in the rotated, by θ, coordinates

$$
\begin{array}{r}
\left(v_{\theta}^{e}(s), v_{\theta-90^{\circ}}^{e}(s)\right)=\mathbf{v}^{s t}(s)-\mathbf{v}^{s h}(s) \\
\mathbf{v}^{s h}(s)=v^{s h}(s) \cdot(\cos (\alpha(s)-\theta(s)), \sin (\alpha(s)-\theta(s)))
\end{array}
$$

$$
\tau^{e}(s)=\frac{1}{\sqrt{\left(v_{\theta}^{e} / L_{\theta}\right)^{2}+\left(v_{\theta-90^{\circ}}^{e} / L_{\theta-90^{\circ}}\right)^{2}+(1 / \tau)^{2} \cdot\left(1-\alpha_{\theta}^{2}-\alpha_{\theta-90^{\circ}}^{2}\right)}}
$$

Simulation

Common experience says that wind speeds varies in different time scales, e.g. diurnal patten due to different temperatures at day and night; frequency of depressions and anti-cyclones which usually occur with periods of about 4 days and annual pattern.

To follow the claim $x(\mathbf{p}, s)$ were decomposed (fft) into four parts: containing periods above 40 days, between 40 and 5 days, between 5 and 1 day and noise. For each signal the parameters have been estimated. Then the Gaussian process $X(s)$ or $X^{e}(s)$ is simulated by

$$
X(s)=m(s)+\sum_{i=1}^{4} \int_{-\infty}^{+\infty} \sigma_{i}(s) f_{\tau_{i}(s)}(s-t) d B_{i}(t)
$$

where

$$
f_{\tau}(t)=(2 / \pi)^{1 / 4} \frac{1}{\sqrt{\tau}} \exp \left(-\pi^{2}\left(\frac{t}{\tau}\right)^{2}\right)
$$

Figure : Top - A rout sailed in Northern Atlantic in April. Middle - The longitude as a function of sailing time [hours]. Bottom - Wind speeds measured on-board a vessel (black line) and a simulation of the wind speed by means of the model (red line).

