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Simulating rainfall

● A regular annual seasonality, inter-annual fluctuations but also a chaotic behavior 
at the daily scale [see e.g. Sivakumar1998].

● The challenge: to simulate synthetic time-series honoring the reference statistics 
and persistence from the daily to the higher temporal scale.

● The problem of over-dispersion: if the model is focused on the daily scale, 
extremes are poorly reproduced at higher scales (= reference is more dispersed 
than the simulation).
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Direct Sampling (DS) 
[Mariethoz 2010,...]

d(x) =  n informed time steps 
closest to x inside the search 
window.

d(x)

d(y) 
candidate data event

Training data set Z(y)

Simulated time-series Z(x)

Random scan
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Direct Sampling (DS) 
[Mariethoz 2010,...]

A sampling rule based on a distance measure (dissimilarity between patterns).

D(d(x),d(y)) 

If D(d(x),d(y)) < T , Z(y) is assigned to Z(x).

Datum pasted
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Distance categorical variables: 

For continuous variables:

Main parameters:

N = max number of considered neighbors;
R = search neighborhood radius;
T = distance threshold;  
F= max scanned TI fraction;
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Direct Sampling (DS) 
[Mariethoz 2010]



8/36

Direct Sampling (DS) 
[Mariethoz 2010]
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Direct Sampling (DS) 
[Mariethoz 2010]
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Direct Sampling (DS) 
[Mariethoz 2010]

Multiple scale pattern 
reproduction

High-order statistics 
reproduction.

No need of a high-order prior!
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Standard DS setup for daily rainfall simulation

(Multivariate simulation)
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Some results: the Australian rainfall [Oriani et al.2014]

Sydney (1858-2013, temperate)

Alice Springs (1941-2013, hot desert)

Darwin (1941-2013, tropical savannah)

100 realizations of the same size of the TI.
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Visual comparison
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Visual comparison
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Visual comparison



16/36

Marginal probability distribution at multiple scales.
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Annual seasonality
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Sample partial autocorrelation function (PACF) at multiple scales.
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A comparison with a state-of-the-art MC model 
[Oriani, Merothra et al., 2014, preparation]

Some recent Markov-Chain (MC) based algorithms [Harrold 2003, Mehrotra 2007]  
introduce non-linearity in the time dependence, i.e. the low-order conditional probability 
varies as a function of some low frequency covariates.

Low frequency fluctuations can be reproduced in 
the daily rainfall simulation.
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Modified Markov Model (MMM) 
[Mehrotra 2007]

OCCURRENCE:

t
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Modified Markov Model (MMM) 
[Mehrotra 2007]

OCCURRENCE:

AMOUNT:                             

using a conditional KDE [Sharma 1997] 

 Kernel weight       

t

(historical data)
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Random simulation path
+ 

Variable non-parametric 
dependence

Linear simulation path
+ 

Fixed non-linear dependence

DS MMM 
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The reference: A synthetic signal with a chaotic seasonality and variable 
time-dependence

OCCURRENCE MODEL: 2 states Markov model  

AMOUNT MODEL:  
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Daily rainfall distribution (mm)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Annual rainfall distribution (mm)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

10-year rainfall distribution (mm)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Dry spell distribution (days)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Dry spell distribution (days)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Wet spell distribution (days)

MMM DS
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Sample autocorrelation function.
TOTAL SIGNAL

MMM DS

reference
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Sample autocorrelation function.
State a

MMM DS

reference
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Simulation of the 1Mil nodes reference using progressively smaller training 
data sets (TI). 

Sample autocorrelation function.
State b

MMM DS

reference
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Conclusions

 High-order 
statistics

Extremes 
extrapolation

Multiple scale 
features 

Non-stationarity 
detection

MMM
(low order, nonlinear 
Markov model + 
conditional kernel 
smoothing) 

DS
(variable, high-order, 
multivariate time 
dependence + non 
parametric 
framework)
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Which one of the two approaches is more efficient?

DS

If

● Large dataset

● Reproducing complex data 
structure is critical 

● Avoid a prior model structure

MMM

If

● Limited amount of data

● The long-term structure is known and 
not overly complex

● A low order MC model can represent 
the short-term time-dependence 

adequately
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Thank you!

Fabio Oriani
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