Workshop on Stochastic Weather Generators

Avignon, September 17-19, 2014

Modeling in the form of met-ocean events of the swell climate in West Africa.

K. A. Kpogo-Nuwoklo¹, S. Arnault², M. Olagnon¹, Z. Guédé¹ and P. Ailliot³

1-Laboratoire Comportement des Structures en Mer, IFREMER, Brest, France.

2- LOCEAN/IPSL, Université Pierre et Marie Curie, Paris, France.

3-Laboratoire de Mathématiques de Bretagne Atlantique, UBO, Brest, France.

> Ocean wave climate is important in many ocean engineering fields : design against fatigue, wave energy harvesting, coastal erosion, ...

> Wave climate is defined as the joint distribution of the sea state characteristic parameters averaged over a period of time for a particular location (*Wiegel, 1964*).

□ A Sea state is defined for a period (from 20min to 6h) during which its charateristic parameters are supposed to be constant

□ A Sea state may be a combination of coexisting wave systems.

> A single set of 3 spectral parameters is not appropriate any more.

ffreme

Existing method for an accurate description of the wave climate:

1- sea state partitioning

2- Joint distribution of the wave systems parameters.

Remarks:

reme

The fine description of the sea state involves too many parameters and it may be difficult to derive their joint distribution with confidence.

Proposed method:

ffreme

Approach based on the modeling of wave systems events in correspondence with the storms that are at their sources.

- > Advantages:
- temporal coherence preservation,
- simplification of the data structure,
- an event has a physical meaning.

□ The steps of the proposed method:

1- extract the swell events

fremer

2- find a parametric model of a swell event

3- statistically analyse the model parameters and the inter-arrival times of the swell events

Simulation of realistic swell climate histories of any desired duration for engineers uses.

Outline

1- Extraction of the swell events

2- Swell event parametric model

3- Multivariate simulation of the parameters of the swell event model

Data

➢ in situ sea surface displacement measurements from march 2001 to may 2004 → half hourly observed directional wave spectra;

Smoothing of the time-history of the empirical spectra computed from buoy using Kriging or a 2 dimensional Kernel Density Estimator.

> The extraction is carried out by using the Watershed algorithm.

f(Hz)

ffremer

time(h)

> Estimation of wave-system parameters and selection of swell events

> 201 swell events are extracted from 3-year in-situ data when the number of extracted swell events from hindcast data is 80 per year in average.

lifreme

- The model involves 3 sea state parameters:
- wave power (P_w)

fremer

- zero up-crossing frequency (f₀₂)
- mean direction (θ_m)

 The swell event model uses a set of 7 parameters

	model	signification
	parameters	
Wave power	$E_0 = \int P_w(t) dt$	total energy of the swell event
$P_{w}(t) = \frac{E_{0}}{\tau^{\alpha} \Gamma(\alpha)} t^{\alpha-1} \exp\left(\frac{-t}{\tau}\right)$	α	shape parameter
	τ	Characteristic duration
zero crossing frequency $f_{02}(t) = \frac{g}{4 \pi d} t + \frac{1}{T_{max}}$	d	traveled distance
	T _{max}	maximum observed period of the event
mean direction $\theta_m(t) = \omega t + \theta_0$	ω	direction slope, i.e. mean angular speed of the source storm relative to obs. point
	θ	direction of the first-arrival swell in the event

Fitting the proposed model to the observed swells

time-history of swell events

□ Now, our goal is to develop a generator of swell events parameters

treme

Checking some statistical features of the swell events parameters:

> seasonality

correlation between the parameters of a swell event

correlation between a swell event and its subsequent, and correlation between events and their inter-arrival time.

Seasonality: strongest events occur during Winter in the South Hemisphere

freme

Monthly distributions of the swell events parameters

correlation between the parameters of a swell event

freme

• The directional parameters (ω , θ_0) are found to be statistically uncorrelated from the others.

Correlation between a swell event and its subsequent, and correlation between events and their inter-arrival time.

- Excluding seasonality, events can be considered as independent
- The inter-arrival time is found to depend only on the previous event

Proposed monthly simulation diagram:

1. Joint probability distribution of (E_0, d) and (ω , θ_0) using gaussian copula to model their dependence .

2. Probabilities distributions of α , τ , I, T_{max} given the joint probability of (E₀, d) using GLM model.

Proposed monthly simulation diagram:

1. Joint probability distribution of (E₀, d) and (ω , θ_0) using gaussian copula to model their dependence .

2. Probabilities distributions of α , τ , I, T_{max} given the joint probability of (E₀, d) using GLM model.

Example of reconstructed swell

Conclusion

- A new approach based on swell event is proposed to model the swell climate.
 It is a satisfactory way to preserve the temporal coherence of swells.
- □ A swell event parametric model is also proposed and it is found to fit well the observed swell events.
- □ The analysis of the swell events parameters shows seasonality and the study of the dependence allows us to propose a monthly mutivariate simulation diagram of these parameters.

Perspectives

□ we still working on the simulation of monthly multivariate swell events parameters in order to derive realistic histories of swell events.

fremer

□ Use some applications such as fatigue, wave energy harvesting or the estimation of coastal shore erosion to validate the simulated swell climates.

lifremer

Thank you!