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1. KAUST

New graduate-level university located 50 miles north of Jeddah

On the Red Sea

Western style campus (14 miles2) and encourages cultural
diversity

First classes in Fall 2009

About 900 students & 130 faculty (will grow to 2000 & 220)

More at: www.kaust.edu.sa

Partnership with TAMU through IAMCS

Past President of CalTech is new President of KAUST since
July 1, 2013

New faculty in statistics: Prof. Ying Sun (es.kaust.edu.sa)

New website: stat.kaust.edu.sa

Recruting students, postdocs and faculty in statistics



2. Motivation, Definitions, Properties

Continuously indexed datasets with multiple variables have
become ubiquitous in the geophysical, ecological,
environmental and climate sciences

Example: in environmental and climate sciences, monitors
collect information on multiple variables such as temperature,
pressure, wind speed and direction, and various pollutants

Example: the output of climate models generate multiple
variables, and there are multiple distinct climate models

Example: physical models in computer experiments often
involve multiple processes that are indexed by not only space
and time, but also parameter settings

Key difficulty: specifying the cross-covariance function,
responsible for the relationship between distinct variables

Cross-covariance functions must be consistent with marginal
covariance functions such that the second order structure
always yields a nonnegative definite covariance matrix



Definitions

p-dimensional multivariate random field
Z(s) = {Z1(s), . . . ,Zp(s)}T defined on Rd , d ≥ 1

Gaussian with µ(s) = E{Z(s)} and cross-covariance matrix
function C(s1, s2) = cov{Z(s1),Z(s2)} = {Cij(s1, s2)}pi ,j=1

composed of functions Cij(s1, s2) = cov{Zi (s1),Zj(s2)}
The covariance matrix Σ of {Z(s1)T, . . . ,Z(sn)T}T ∈ Rnp:

Σ =


C(s1, s1) C(s1, s2) · · · C(s1, sn)
C(s2, s1) C(s2, s2) · · · C(s2, sn)

...
...

. . .
...

C(sn, s1) C(sn, s2) · · · C(sn, sn)


should be nonnegative definite: aTΣa ≥ 0 for any vector
a ∈ Rnp, any spatial locations s1, . . . , sn, and any integer n

Second-order stationarity: cov{Zi (s1),Zj(s2)} = Cij(h)

Isotropy: cov{Zi (s1),Zj(s2)} = Cij(‖h‖)
Statistical tests of cross-covariance structure



Properties

Σ must be symmetric, hence matrix functions must satisfy
C(s1, s2) = C(s2, s1)T, or C(h) = C(−h)T under stationarity

Thus cross-covariance matrix functions usually not symmetric:

Cij(s1, s2) = cov{Zi (s1),Zj(s2)} 6= cov{Zj(s1),Zi (s2)} = Cji (s1, s2)

Collocated matrices C(s, s), or C(0) under stationarity, are
symmetric and nonnegative definite

|Cij(s1, s2)|2 ≤ Cii (s1, s1)Cjj(s2, s2), or |Cij(h)|2 ≤ Cii (0)Cjj(0)

But |Cij(s1, s2)| need not be less than or equal to Cij(s1, s1),
or |Cij(h)| need not be less than or equal to Cij(0)

This is because the maximum value of Cij(h) is not restricted
to occur at h = 0, unless i = j

Separability: Cij(s1, s2) = ρ(s1, s2)Rij

where ρ(s1, s2) is a valid, nonstationary or stationary,
correlation function and Rij = cov(Zi ,Zj) is the nonspatial
covariance between variables i and j



3. Cross-Covariances built from Univariate Models

3.1 Linear model of coregionalization

Representation of the multivariate random field as a linear
combination of r independent univariate random fields

Resulting cross-covariance functions:
Cij(h) =

∑r
k=1 ρk(h)AikAjk , h ∈ Rd , for an integer

1 ≤ r ≤ p, where ρk(·) are valid stationary correlation
functions and A = (Aij)

p,r
i ,j=1 is a p × r full rank matrix

Only r univariate covariances ρk(h) must be specified, thus
avoiding direct specification of a valid cross-covariance matrix
function

When r = 1, the cross-covariance function is separable

With a large number of processes, the number of parameters
can quickly become unwieldy and resulting estimation difficult

Smoothness of any component of multivariate random field
restricted to that of the roughest underlying univariate process



Cross-Covariances built from Univariate Models

3.2 Convolution methods

Kernel convolution method:

Cij(h) =

∫
Rd

∫
Rd

ki (v1)kj(v2)ρ(v1 − v2 + h)dv1dv2

where the ki are square integrable kernel functions and ρ(·) is
a valid stationary correlation function

This approach assumes that all the spatial processes Zi (s) are
generated by the same underlying process, which is restrictive

Except some special cases, requires Monte Carlo integration

Covariance convolution method:

Cij(h) =

∫
Rd

Ci (h− k)Cj(k)dk

where Ci are square integrable functions

Except some special cases, requires Monte Carlo integration

Example: when the Ci are Matérn correlation functions with
common scale parameters, they are closed under convolution
and this yields special case of the multivariate Matérn model



Cross-Covariances built from Univariate Models

3.3 Latent dimensions

Idea: create additional latent dimensions that represent the
various variables to be modeled

Each component i of the multivariate random field Z(s) is
represented as a point ξi = (ξi1, . . . , ξik)T in Rk , i = 1, . . . , p,
for an integer 1 ≤ k ≤ p

Then: Cij(s1, s2) = C{(s1, ξi ), (s2, ξj)}, s1, s2 ∈ Rd where

C is a valid univariate covariance function on Rd+k

If C is stationary: Cij(h) = C (h, ξi − ξj)

Example:

Cij(h) =
σiσj

‖ξi−ξj‖+1 exp
{

−α‖h‖
(‖ξi−ξj‖+1)β/2

}
+ τ2I (i = j)I (h = 0)

where σi > 0 are marginal standard deviations, τ ≥ 0 is a
nugget effect, and α > 0 is a length scale

Here β ∈ [0, 1] controls the non-separability between space
and variables, with β = 0 being the separable case



4. Matérn Cross-Covariance Functions

Matérn class of positive definite functions has become the
standard covariance model for univariate fields

M(h | ν, a) = 21−ν

Γ(ν) (a‖h‖)νKν(a‖h‖)
where Kν is modified Bessel function of order ν, a > 0 is
length scale parameter that controls rate of decay of
correlation at larger distances, while ν > 0 is smoothness
parameter that controls behavior of correlation near the origin

Multivariate Matérn:
ρii (h) = M(h | νi , ai ) and ρij(h) = βijM(h | νij , aij)
βij is a collocated cross-correlation coefficient i.e. strength of
correlation between Zi and Zj at same location, h = 0

Conditions on model parameters νi , νij , ai , aij and βij that
result in a valid multivariate covariance class

Parsimonious Matérn: ai = aij = a, νij = (νi + νj)/2

Full Matérn: p = 2 characterization, p > 2



5. Nonstationary Cross-Covariance Functions

Geophysical, environmental and ecological spatial processes
often exhibit spatial dependence that depends on fixed
geographical features such as terrain or land use type, or
dynamical environments such as prevailing winds

Need nonstationary models: cov{Zi (s1),Zj(s2)} = Cij(s1, s2)

Nonstationary LMC: Cij(s1, s2) =
∑r

k=1 ρk(s1, s2)AikAjk

or Cij(s1, s2) =
∑r

k=1 ρk(s1 − s2)Aik(s1)Ajk(s2)

Nonstationary multivariate Matérn:

ρii (s1, s2) ∝ M(s1, s2 | νi (s1, s2), ai (s1, s2))

ρij(s1, s2) ∝ βij(s1, s2)M(s1, s2 | νij(s1, s2), aij(s1, s2))

βij(s, s) is proportional to the collocated cross-correlation
coefficient cor{Zi (s),Zj(s)}
Covariance and kernel convolution can also be extended to
result in nonstationary matrix functions



6. Cross-Covariance Functions with Special Features

6.1 Asymmetric cross-covariance functions

All the stationary models described so far are symmetric
i.e. Cij(h) = Cji (h), or equivalently, Cij(h) = Cij(−h).

Although Cij(h) = Cji (−h) by definition, the aforementioned
properties may not hold in general

Key idea: If Z(s) = {Z1(s), . . . ,Zp(s)}T has cross-covariance
functions Cij(h), then {Z1(s− a1), . . . ,Zp(s− ap)}T has
cross-covariance functions C a

ij (h) = Cij(h + ai − aj)

Constraint a1 + · · ·+ ap = 0 or a1 = 0 to ensure identifiability

Can render any stationary symmetric cross-covariance function
asymmetric

Asymmetric cross-covariance functions, when required, can
achieve remarkable improvements in prediction over symmetric
models



Cross-Covariance Functions with Special Features

6.2 Compactly supported cross-covariance functions

Computational issues in the face of large datasets is a major
problem in any spatial analysis, even more so in multivariate
case, including likelihood calculations and/or co-kriging

One approach is to induce sparsity in the covariance matrix,
either by using a compactly supported covariance function as
the model, or by covariance tapering

Scale mixtures of the form: Cij(h) =
∫

(1− ‖h‖/x)ν+ gij(x)dx
where ν ≥ (d + 1)/2 and {gij(x)}pi ,j=1 forms a valid
cross-covariance matrix function

For instance, with gij(x) = xν(1− x/b)
γij
+ where γi > 0 and

γij = (γi + γj)/2 we have the multivariate Askey taper

Cij(h) = bν+1B(γij + 1, ν + 1)

(
1− ‖h‖

b

)ν+γij+1

, ‖h‖ < b

and 0 otherwise, where B is the beta function; extend to bij



Cross-Covariance Functions with Special Features

6.3 Cross-covariance functions on the sphere

Many multivariate datasets from environmental and climate
sciences are collected over large portions of the Earth, for
example by satellites, and therefore cross-covariance functions
on the sphere S2 in R3 are in need

Multivariate process on the sphere: Zi (L, l), i = 1, . . . , p, with
L=latitude and l=longitude

Cross-covariance functions by applying differential operators
with respect to latitude and longitude to process on the sphere

Nonstationary models of cross-covariances with respect to
latitude, so-called axially symmetric, and longitudinally
irreversible cross-covariance functions:
cov{Zi (L1, l1),Zj(L2, l2)} 6= cov{Zi (L1, l2),Zj(L2, l1)}
Extensions from chordal distance to great circle distance



7. Data Examples

7.1 Climate model output data
North American Regional Climate Change Assessment
Program (NARCCAP) climate modeling experiment

Average summer (JJA) temperature and cube-root
precipitation over a region of the midwest US

24 years (1981-2004) of residuals after removing spatially
varying mean from each year’s output for the two variables



Data Examples

Temperature residuals smoother, precipitation rougher, both
have similar correlation length scales
Empirical correlation coefficient of −0.67

Table : Maximum likelihood estimates of parameters for full and parsimonious
bivariate Matérn models, applied to the NARCCAP model data

Model σT σP νT νP 1/aT 1/aP 1/aTP ρTP

Full 1.63 0.19 1.31 0.55 384.3 361.6 420.1 −0.60

Parsimonious 1.61 0.19 1.33 0.54 367.1 - - −0.49

Table : Comparison of log likelihood values and pseudo cross-validation scores
averaged over ten cross-validation replications for various multivariate models

Log likelihood RMSE (T) CRPS (T) RMSE (P) CRPS (P)
Nonstationary parsimonious Matérn 53564.5 0.168 0.084 0.085 0.047
Parsimonious lagged Matérn 52563.7 0.179 0.090 0.087 0.048
Full Matérn 52560.1 0.178 0.090 0.087 0.048
Parsimonious Matérn 52556.9 0.179 0.090 0.087 0.048
Latent dimension 52028.8 0.180 0.091 0.088 0.049
LMC 51937.0 0.179 0.091 0.090 0.050
Independent Matérn 50354.5 0.180 0.091 0.088 0.049
Latent dimension example 48086.3 0.195 0.100 0.088 0.048



Data Examples

7.2 Observational temperature data
Bivariate minimum and maximum temperature data
Observations available at stations from United States
Historical Climatology Network over the state of Colorado
Bivariate daily temperature residuals (having removed the
state-wide mean) on September 19, 2004, a day with good
network coverage with observations available at 94 stations
Predictive RMSE and CRPS are improved by between 6− 7%
when co-kriging using the parsimonious lagged Matérn, as
compared to marginally kriging each variable

Table : Comparison of log likelihood values and pseudo cross-validation scores
averaged over 100 cross-validation replications for various multivariate models

Log likelihood RMSE (min) CRPS (min) RMSE (max) CRPS (max)
Parsimonious lagged Matérn −414.0 3.18 1.83 3.14 1.79
Parsimonious Matérn −414.9 3.22 1.85 3.16 1.80
LMC −415.7 3.22 1.85 3.16 1.80
Latent dimension −416.2 3.23 1.86 3.18 1.81
Latent dimension example −419.1 3.24 1.86 3.17 1.81
Independent Matérn −427.6 3.41 1.94 3.35 1.91



8. Discussion

8.1 Specialized cross-covariance functions

Nonstationary construction that allows individual variables to
be a spatially varying mixture of short and long range
dependence

Various approaches to produce valid cross-covariance
functions based on differentiation of univariate covariance
functions and on scale mixtures of covariance matrix functions

Constructions of variogram matrix functions

Approach to building variogram matrix functions based on a
univariate variogram model

Approach to generating valid matrix covariances by
considering stochastic partial differential equations

For example: systems of SPDEs to simultaneously model
temperature and humidity, yielding computationally efficient
means to analysis by approximating a Gaussian random field
by a Gaussian Markov random field



Discussion

8.2 Spatio-temporal cross-covariance functions

Spatio-temporal multivariate random field, Z(s, t), has
stationary cross-covariance functions Cij(h, u), where u
denotes a time lag

If ϕ1(t), t ≥ 0, is a completely monotone function and
ψ1(t), ψ2(t), t ≥ 0, are positive functions with completely
monotone derivatives, then

C (h, u, v) =
σ2

[ψ1{u2/ψ2(‖v‖2)}]d/2 {ψ2(‖v‖2)}1/2
ϕ1

[
‖h‖2

ψ1{u2/ψ2(‖v‖2)}

]
is a valid stationary covariance function on Rd+1+k that can
be used to model cross-covariance functions with v = ξi − ξj

First type of asymmetric spatio-temporal cross-covariance:
C a
ij (h, u) = C (h, u − λT

ξ (ξi − ξj), ξi − ξj)

Second type of asymmetric spatio-temporal cross-covariance:
C a
ij (h, u) = C (h− γhu, u, ξi − ξj − γξu)



Discussion

8.3 Physics-constrained cross-covariance functions

A number of physical processes, especially in fluid dynamics,
involve fields with specialized restrictions such as being
divergence free

Matrix-valued covariance functions for divergence-free and
curl-free random vector fields

Framework for valid matrix-valued covariance functions when
the constituent processes have known physical constraints
relating their behavior

Spatio-temporal correlations for temperature fields arising
from simple energy-balance climate models, that is,
white-noise-driven damped diffusion equations. The resulting
spatial correlation on the plane is of Matérn type with
smoothness parameter ν = 1, although rougher temperature
fields are expected due to terrain irregularities for example

Extension to other variables such as pressure and wind fields,
and possibly lead to Matérn cross-covariance models?



Discussion

8.4 Open problems

Theoretical characterization of the allowable classes of
multivariate covariances: given two marginal covariances,
what is the valid class of possible cross-covariances that still
results in a nonnegative definite structure?

Utility of cross-covariance models: for the purposes of
co-kriging, in what situations are the use of nontrivial
cross-covariances beneficial?

Validity of multivariate version of power exponential class of
covariances?

Extension of spatial extremes to the case of multiple
variables?

Valid multivariate cross-covariance functions for spatial data
on a lattice

Genton, M. G., and Kleiber, W. (2014), “Cross-covariance
functions for multivariate geostatistics,” Statistical Science, in press
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