

Rglimclim: a multivariate, multisite daily weather generator for climate change impact studies

Richard Chandler

r.chandler@ucl.ac.uk

Department of Statistical Science, University College London

SWG 2014, Avignon, September 2014

Research funded by NERC Changing Water Cycle Programme

Background ●○○○○	GLM-based weather generators	Rglimclim 00000	Example	Summary 00
The HydEF project				
Motivatin	g example			

HydEF project

(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

• Detailed hydro(geo)logical models require high-resolution weather inputs, consistent with changing large-scale synoptic conditions as obtained e.g. from reanalysis products or GCMs

Background ●○○○○	GLM-based weather generators	Rglimclim 00000	Example	Summary 00
The HydEF project				
Motivatin	a example			

HydEF project

(http://www.bgs.ac.uk/changingwatercycle/hydef.html) looking
at hydro(geo)logical impacts of climate change in UK

• Detailed hydro(geo)logical models require high-resolution weather inputs, consistent with changing large-scale synoptic conditions as obtained e.g. from reanalysis products or GCMs

E.g. variables needed by JULES:					
Rainfall rate	Air pressure	Snowfall rate	Air temperature		
Wind speed	Specific humidity	Downward short-wave radiation	Downward long-wave radiation		

Background ○●○○○	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00
Case study: the Thame	S			
Case stuc	ly: the Thames			

- Largest catchment in UK (~ 10000km²)
- Modellers wanted hourly sequences, 8 variables, 1km² resolution throughout catchment

- Negotiated settlement: daily sequences, 5 × 5km² resolution, Kennet subcatchment (186 grid nodes)
- Data on (most) variables nominally available from 157 stations, 1970 onwards

Background ○O●O○	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00
Case study: the Thames				
Data availa	bility (I)			

- Hourly data obtained from British Atmospheric Data Centre (BADC), MIDAS Met Office dataset
- Available variables: rainfall, snow, air pressure, air temperature, wind speed, downward SW radiation
- Missing variables: specific humidity and downward LW radiation
 - Can be derived from other variables using standard procedures from literature
- BUT ...

Background ○○○●○	GLM-ba oo	sed weather generat	ors Rglimcl 00000	im Examp 0000	ole 000000	Summary 00
Case study: th	e Thames					
Data availability (II)						
	Ν	lumbers of s	stations with da	ta (out of 157)		
	Rainfall	Pressure	Temperature	Wind speed	SWR	
	71	52	140	135	22	

Proportions of available observations - Pressure

 Many stations have short / incomplete/ patchy records

Background ○○○○●	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00
Requirements				
Weather g	enerator requireme	ents		

• Need to generate daily data for ...

Background ○○○○●	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00	
Requirements					
Weather generator requirements					

- Need to generate daily data for ...
- Several variables simultaneously, with different distributions and preserving inter-variable relationships ...

Background ○○○○●	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00	
Requirements					
Weather generator requirements					

- Need to generate daily data for ...
- Several variables simultaneously, with different distributions and preserving inter-variable relationships ...
- at many locations simultaneously, preserving inter-site relationships ...

Background ○○○○●	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00	
Requirements					
Weather generator requirements					

- Need to generate daily data for ...
- Several variables simultaneously, with different distributions and preserving inter-variable relationships ...
- at many locations simultaneously, preserving inter-site relationships ...
- ... including locations for which no observations are available ...

Background ○○○○●	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary 00	
Requirements					
Weather generator requirements					

- Need to generate daily data for ...
- Several variables simultaneously, with different distributions and preserving inter-variable relationships ...
- at many locations simultaneously, preserving inter-site relationships ...
- Including locations for which no observations are available ...
- ... and substantial amounts of missing data at locations where observations *are* available

Background	GLM-based weather generators	Rglimclim	Example	Summary
	●○	00000	000000000	00
Overview of approach				

An approach based on generalised linear models

- Idea: model each variable in turn, in each case conditioning on previously-considered variables
 - Justification: generalised multiplication law any joint distribution $f(y_1, y_2, ..., y_k)$ can be factorised as

 $f(y_1, y_2, \ldots, y_k) = f_1(y_1)f_2(y_2|y_1) \ldots f_k(y_k|y_1, \ldots, y_{k-1}).$

Background	GLM-based weather generators	Example	Summary
	•o		
Overview of approach			

An approach based on generalised linear models

- Idea: model each variable in turn, in each case conditioning on previously-considered variables
 - Justification: generalised multiplication law any joint distribution $f(y_1, y_2, ..., y_k)$ can be factorised as

 $f(y_1, y_2, \ldots, y_k) = f_1(y_1)f_2(y_2|y_1) \ldots f_k(y_k|y_1, \ldots, y_{k-1}).$

Simulate each variable in turn to produce mutually consistent series

Background	GLM-based weather generators	Rglimclim	Example	Summary
00000	●O	00000	000000000	00
Overview of approach				

An approach based on generalised linear models

- Idea: model each variable in turn, in each case conditioning on previously-considered variables
 - Justification: generalised multiplication law any joint distribution $f(y_1, y_2, ..., y_k)$ can be factorised as

 $f(y_1, y_2, \ldots, y_k) = f_1(y_1)f_2(y_2|y_1) \ldots f_k(y_k|y_1, \ldots, y_{k-1}).$

- Simulate each variable in turn to produce mutually consistent series
- Component models for each variable are generalized linear models (GLMs):
 - Each value considered to be drawn from its own probability distribution
 - Distributions for each variable all of same form (normal, gamma, ...)
 - GLM-based WGs compete favourably with other state-of-the-art techniques (e.g. Maraun et al., *Rev. Geophys.*, 2010; Frost et al., *J. Hydrol.*, 2011)

Background 00000	GLM-based weather generators O●	Rglimclim 00000	Example 000000000	Summary 00
Overview of approach				
GI Ms for y	veather generation	ı		

- Means of distributions determined by linear functions of covariates representing, e.g., geographical location, time of year, indices of large-scale synoptic structure, previous days weather, current days values of other variables, ...
- Variance usually determined by mean, but can be modelled separately
- Dependence on other variables ensures mutual consistency of generated series
 - NB dependence in one direction only (generalised multiplication law)
- Also need mutual consistency between spatial locations
 - Addressed using inter-site dependence models

- Software package for developing multivariate, multisite daily weather generators using GLMs
- Runs under R (http://www.R-project.org) on all platforms
- Based on earlier Glimclim package Fortran 77(!), multisite but univariate weather generator
- Adds graphical facilities and diagnostics as well as multivariate modelling / simulation capability
- Flexible model structures allow development based on physical understanding rather than statistical convenience
- Allows imputation of missing values (see later)

Background	GLM-based weather generators	Rglimclim OOOOO	Example 000000000	Summary 00
Package overview				
Modellin	a capability (I)			

- Distributions currently available:
 - Normal (not very useful)
 - Heteroscedastic normal (suitable for, e.g., temperature)
 - Gamma (suitable for, e.g., wind speed, precipitation intensity)
 - Bernoulli (suitable for, e.g., precipitation occurrence)

Background	GLM-based weather generators	Rglimclim OOOOO	Example 000000000	Summary 00
Package overview				
Modelling	capability (I)			

- Distributions currently available:
 - Normal (not very useful)
 - Heteroscedastic normal (suitable for, e.g., temperature)
 - Gamma (suitable for, e.g., wind speed, precipitation intensity)
 - Bernoulli (suitable for, e.g., precipitation occurrence)
- Covariate classes:
 - 'Site effects': flexible representation of systematic regional variation ('climatology')
 - Seasonality: various options available
 - Autocorrelation: functions of lagged values
 - Inter-variable dependence: functions of simultaneous and lagged values of other variables
 - 'External' influences e.g. indices of large-scale climate
 - Interactions: allow effects of one variable to be modulated by others

Background	GLM-based weather generators	Rglimclim ⊙⊙●○○	Example 000000000	Summary 00
Package overview				
Modellin	g capability (II)			

- Several structures available for representing residual inter-site dependence to ensure spatial coherence
- Most based on correlation structures for standardised / Anscombe residuals (defined so as to have "almost Gaussian" distribution)

Background	GLM-based weather generators	Rglimclim ⊙⊙●⊙⊙	Example 000000000	Summary 00
Package overview				
Modellin	a capability (II)			

- Several structures available for representing residual inter-site dependence to ensure spatial coherence
- Most based on correlation structures for standardised / Anscombe residuals (defined so as to have "almost Gaussian" distribution)
- Additional options available for Bernoulli distributions needed for realistic generation of spatial rainfall occurrence:
 - Thresholding of latent Gaussian field with spatial correlation structure suitable for large regions
 - Beta-binomial representation for distribution of 'wet area' suitable for small catchments where inter-site dependence is uniformly high
 - Model based on simple binary weather state process (original Glimclim model other options preferable)

Background	GLM-based weather generator	s Rglimclim 00000	Example 000000000	Summary 00
Inference				

Model fitting and comparison

- Models fitted using maximum likelihood under (incorrect) assumption of independence between sites
 - Standard IWLS fitting algorithm, augmented to allow estimation of parameters in nonlinear covariate transformations
 - Computationally fast ⇒ feasible to fit & compare many different models on large datasets
 - Lose some estimation efficiency compared with fully-specified spatial model unimportant for large datasets
 - Usual standard errors adjusted for inter-site dependence ('sandwich covariance estimation')
- Model comparison using likelihood ratio tests adjusted for inter-site dependence (methodology of Chandler & Bate, *Biometrika*, 2007)
- Extensive summary and diagnostic information to identify lack-of-fit and guide model-building process

Background	GLM-based weather generators	Rglimclim ○○○○●	Example 000000000	Summary 00
Simulation and imputation				
Simulation	and imputation			

- Simulated sequences can be either unconstrained (conventional WG) or conditioned on all available observations:
 - Allows for multiple imputation of missing observations ⇒ quantifies uncertainty in historical properties
 - Can also be used to 'interpolate' to regular grid alternative to gridded datasets
- Summary and plot methods check ability to reproduce wide variety of properties

Ba	ackground G	LM-based weather generators	Rglimclim 00000	Example ••••	Summary 00
Tŀ	ames: model structure				
E	Example: the	e Thames aga	in		
	V	ariables modell	ed and distribu	tions used	
	Variable	Distributi	on		
	Air pressure	Normal dis	stribution with chan	ging mean and varia	ince
	Rainfall	Logistic re distribution variation (egression for occur n with changing me CV) for wet-day am	rrence (wet / dry), an & constant coeffi ounts	gamma cient of
	Air temperatur	e Normal di	stribution with chan	ging mean and varia	ince
	Wind speed	Gamma d	istribution with char	nging mean & consta	ant CV
	Wet bulb temp	erature Normal dis	stribution with chan	ging mean and varia	ince
	Short wave rac	liation Gamma d	istribution with char	nging mean & consta	ant CV
	Cloud cover	Gamma d	istribution with char	nging mean & consta	ant CV

Model fitted to data from 1970–2000

⁴UCL

Background GLM-based we	eather generators	Rglimclim 00000	Example oo●ooooooo	Summary 00
Thames: model structure				
Thames: detail of	windspeed	d model co	omponent	
 Site s, day t: gam logμ_{st} = β₀ + 	ma distributio $\beta_1 x_{st}^{(1)} + \ldots + $	n, mean μ_{st} & $\beta_p x_{st}^{(p)}$ where {	x_{shape} parameter α $x_{st}^{(j)}$ are covariate values	3
<pre>> WindModel WIND SPEED MODEL - GAMMA DISTRIM Response variable: w_speed_ms</pre>	# name of s BUTION	tored wind speed mo	del object	
Main effects:				
CC 1 Legendre polynomial 1 for Le 2 Legendre polynomial 1 for L 3 Legendre polynomial 4 for Le 8 Legendre polynomial 4 for Le 9 Mapped_A 10 altitude.std_dev 11 MSDP (cc 12 AR300 (cc 13 Distance-weighted mean of ain 14 Daily seasonal effect, cosine 15 Daily seasonal effect, sine co	Coefficient 10.2918 utitude -0.3868 ungitud -0.3868 utitude -0.33868 utitude -0.331 _3x3km2 -0.1145 _pres[-0.7233 _pres[-0.7233 _pres[-0.7491 torpres[0.0491 tompone 0.1146	Std Err T-stat P 0.9637 10.6800 0.0131 2.2084 0.0288 -13.4091 0.0023 +42.6402 0.0023 14.4920 0.0100 5.7106 1 0.0416 17.5900 0.0035 -43.6075 0.0063 18.3253	r (T >t) 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 .127e-08 2.2e-16 .127e-08 2.2e-16 .127e-08 2.2e-16 .127e-08 2.2e-16 .22e-16	

Background
00000

Rglimclim 00000 Example

Summary

Thames: diagnostics

Checking the fit: seasonality and trends

> par(mfrow=c(2,2)) # 2*2 array of plots

- Plots enable quick visualisation of unexplained structure in mean and variability
- Unexplained trend in annual means suggests model needs improving
 - Subsequent investigation revealed spurious trends in pressure covariate data

plot (WindModel)

>

Background	
00000	

Rglimclim 00000 Example

Summary

Thames: diagnostics

Checking the fit: systematic regional variation

- Circle sizes proportional to average residual ("standardised model bias") at each site
- Solid & dashed lines indicate under- and overprediction
- Thick lines indicate residuals significantly different from zero (5% level)
- Some big residuals but no systematic structure — regional variation captured OK by model

Code to generate this plot:

- > par(mfrow=c(1,1)) # Single plot on page
- > plot(WindModel, which.plots=3,

site.options=list(add.to.map=TRUE,scale=1.5,coord.cols=2:1))

≜∐(

Background
00000

Rglimclim 00000 Example

Summary

Thames: diagnostics

Checking the fit: other diagnostics

Code to generate these plots:

- Quantile-quantile plot shows excellent fit of gamma distributions
- Observed inter-site residual correlations are all over the place ...

 NB shading intensity indicates # of observations contributing to each pairwise correlation — avoids overinterpreting very imprecise correlations

Background	GLM-based weather generators	Rglimclim 00000	Example	Summary 00	
Thames: simulation and imputation					
Thames: te	sting simulation per	formance			

- 100 multivariate time series simulated simultaneously at station locations and Kennet grid nodes (357 locations total), 2001-2009 (validation period)
- Also 39 imputations
- Calculate summary measures for each simulation 100 values for each summary
- Compare simulated distributions with envelope from imputations which is 95% interval for actual value

Background 00000	GLM-based weather generators	Rglimclim 00000	Example 0000000000	Summary 00	
Thames: simulation and imputation					
Thames	: simulations (I)				

Upper Kennet, mean of variable w_speed_s Upper Kennet, mean of variable w_speed_s Upper Kennet, mean of variable w_speed_s Upper Kennet, mean of variable w_speed_s

Jpper Kennet, mean of variable prop_arr Upper Kennet, mean of variable prop_arr Upper Kennet, mean of variable prop_arr Upper Kennet, mean of variable prop_arr

- Simulations overestimate wind speed variability here, otherwise OK
- Considerable uncertainty over precipitation due to lack of observations

Code to generate these plots:

⁺UCL

Background	
00000	

Example 000000000000

Thames: simulation and imputation

Thames: simulations (II)

Upper Kennet, mean of variable air pres Upper Kennet, mean of variable air Correlation with air pres Correlation with w speed ms

Correlation with prop ami

Cennet, mean of variable w as Kennet, mean of variable w a nnet, mean of variable w speed Correlation with air_pres Correlation with w_speed_ms Correlation with terms N Correlation with prop and

Kennet, mean of variable temp K:

Correlation with temp K

Kennet, mean of variable temp_K Correlation with air pres

Correlation with air pres

Upper Kennet, mean of variable te

Cennet, mean of variable prop an Upper Kennet, mean of variable prop Correlation with w speed mr

3

Kennet, mean of variable temp K

Correlation with prcp ami

Cennet, mean of variable prop am Correlation with prcp am

Same set of simulations, now looking at inter-variable correlations

NB uncertainty over ۲ precipitation again

Richard Chandler (r.chandler@ucl.ac.uk)

Background	

Example 0000000000

Thames: simulation and imputation

Thames: simulations (III)

Sep, Oct, No

Now looking at seasonal means for each variable

- Seasons" are user-defined
- Check for reproduction of interannual variability

Code to generate these plots:

- > par(mfrow=c(4, 4))
- > plot(sim.summary, imputation=obs.summary,

which.timescales="monthly",

which.sites=NULL,

which.regions="Upper Kennet", colours.sim="colour")

Background	GLM-based weather generators	Rglimclim 00000	Example 000000000	Summary •0
Conclud	ing thoughts			

- Package is powerful, flexible and computationally efficient compared with other advanced downscaling methods / weather generators
- Easy to produce diagnostics to assess suitability for use in impacts studies
- Provides information on uncertainty due to missing observations (cf gridded data products)

• Requires good level of statistical awareness — model-building not trivial

Obtaining the software:

Download from

Useful event?

3rd VALUE Training School: Spatial and Temporal Variability in Statistical and Dynamical Downscaling, Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, 3–14 November 2014 http://www.value-cost.eu/node/1143

 $\ensuremath{\textcircled{}}$ Thank you for your attention $\ensuremath{\textcircled{}}$

