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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives

Step 1: conditional simulations

Distribution of maxima of precipitation at some new locations

given some observations at other locations.

Step 2: downscaling

Distribution of maxima of precipitation at some new locations

given grid-cells information.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Max-stable processes (De Haan, 1984)

Model : Z(x) = max
n≥1
{ξnYn(x)}

where Yn i.i.d continuous random
�elds and ξn a Poisson process on
R+ with intensity αt−(α+1)dt.

Brown-Resnik processes: Yn
log-Gaussian intrinsic random �elds,

α = 1.

Schlather processes: Yn stationary

Gaussian �elds, α = 1.

Extremal t processes: Yn stationary

Gaussian �elds, α ≥ 0.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Step 1: Conditional simulation

Objective: Simulate Z(x0)|Z(x1) = z1, . . . , Z(xn) = zn.

Dombry et al. (2013) proposed a conditional simulation

algorithm for some max-stable processes (Brown-Resnick and

Schlather processes).

Our contribution:

Generalization of this algorithm to the extremal t processes

family.

Improvement of the algorithm to allow higher number of

conditioning points.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives and methodology

Step 2: downscaling

Available tools: climate numerical models at a global or regional

scale.

Problems : -Spatial resolution too low to provide good

description of the process of interest.

-Poor characterization of extreme behavior.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives and methodology

Step 2: downscaling

Downscaling is the action of

generating climatic or

meteorological values at a local

scale based on information

given at a large scale.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives and methodology

Step 2: downscaling

Solution: Downscaling of the regional climate models (RCM)

outputs

Climate model : cells M1, . . . ,Mn

Objective: Simulate Z(x0)|M1 = m1, . . . ,Mn = mn

Method: use downscaled values as conditioning points.

⇒ Spatial Hybrid Downscaling method (SHD)

Aurélien Bechler Conditional simulations of extreme climatic processes 7 / 15



Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives and methodology

Step 2: downscaling

Solution: Downscaling of the regional climate models (RCM)

outputs

Climate model : cells M1, . . . ,Mn

Objective: Simulate Z(x0)|M1 = m1, . . . ,Mn = mn

Method: use downscaled values as conditioning points.

⇒ Spatial Hybrid Downscaling method (SHD)

Aurélien Bechler Conditional simulations of extreme climatic processes 7 / 15



Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Objectives and methodology

SHD : a physical and statistical approach

General Methodology:

Choose a given number of points in the local scale

dataset.

Establish a statistical link (transfer function) between

the large scale information (from RCM outputs) and these

points (calibrated on the past)

Build with this transfer function some pseudo-observations

at these given locations when there is no longer pointwise

information available.

Perform the conditional simulation algorithm of

max-stable processes with the pseudo-observations as

conditioning values.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Local scale: SAFRAN data (Quintana-Segui et al., 2008)

Goal: Perform a large number of conditional simulations with

the SHD method and check their quality with the test points.

Figure: Study area of SAFRAN data
subset.

Description:

Autumnal maximum of daily

precipitation for 1960-2007.

457 points uniformly

distributed.

Grid data from

interpolation.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Large scale: MEDCORDEX-IPSL-WRF data

Goal: Perform a large number of conditional simulations with

the SHD method and check their quality with the test points.

0 10 20 30

Figure: MEDCORDEX-IPSL-WRF

maximum precipitation data for the year
1989 (in mm).

Description:

RCM outputs of autumnal daily

precipitation for 1989-2007.

Grid resolution: about 50km.

Area of interest is covered by 12
grid-cells.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Transfer functions and methods

Methods TF Cond. Sim. Description

Interpolation NO NO
Bilinear interpolation of the RCM
outputs values.

Linear downsc. YES NO
Linear regression between the local-scale
variable and the large-scale variable

Raw NO YES
Use directly RCM outputs as
conditioning values.

CDF-t YES YES
Build a bias correction by comparing the
CDF of the large-scale variable and
the one of the local-scale variable.

Linear reg. YES YES
Same as Linear downscaling but only
at the conditioning points.

Optimal NO YES
Use directly the real observations
as conditioning values

Table: Di�erent methods for building the pseudo-observations from the
Medcordex and Safran datasets.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Results

Skill-Score: % of improvement compared to a reference method.

Models CRPSS QSS95 K-S SS RMSEv SS

No simulations
Interpolation -20.1% -54.8% -19.8% -0.4%
Linear downscaling 0% 0% 0% 0%

Conditional
Raw 14.0% 44.4% 10.4% 20.2%
CDF-t 14.1% 60.6% 12.3% 40.4%

Simulations
Linear Regression 20.1% 53.4% 15.0% 22.5%
Optimal 24.2% 70.7% 18.7% 52.9%

Table: Skill-Scores (with Linear downscaling as reference) of the
hybrid algorithm with the di�erent methods for building the

pseudo-obs. from the MEDCORDEX dataset.

Aurélien Bechler Conditional simulations of extreme climatic processes 12 / 15



Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Results
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Figure: Annual means obtained by the 6 methods. The observed in
blue and each trajectory in red is one conditional simulation.
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Framework and objectives Conditional simulations algorithm From conditional simulations to downscaling

Application to real datasets

Conclusions and perspectives

Conclusions:

Conditional simulation of extremal t processes.

Use of statistical downscaling and conditional simulations

to get distribution of extreme precipitation even when no

observation is available.

Perspectives:

Test on other RCM.

Choice of the conditioning points in the SHD method

(PAM, PAM into a grid-cell,...).

Describe the future evolution of the extreme precipitation

in function of di�erent large-scale scenarios.
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Figure: CRPS (in mm) map for the year 2000.
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Comparison scores

Continuous ranking probability score (CRPS):

CRPS(F ; y) =

∫ +∞

−∞

[
F (t)−H(t− y)

]2
dt,

with F the empirical cumulative function of the conditional

simulations, y the test value and H the Heaviside function.
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Figure: Illustration of the crps.
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Comparison scores

Continuous ranking probability score (CRPS):

CRPS(F ; y) =

∫ +∞

−∞

[
F (t)−H(t− y)

]2
dt,

with F the empirical cumulative function of the conditional

simulations, y the test value and H the Heaviside function.

The quantile score (QS):

QSp(F ; y) = νp(y − F−1(p))

where p is the probability of interest and νp(u) = pu if u ≥ 0
and νp(u) = (p− 1)u otherwise.
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Description de l'algorithme

Etape 1 : tirer τ une partition aléatoire de {x1, . . . , xk} qui a

pour distribution

P[θ = τ | Z(x) = z] ∝
|τ |∏
j=1

λαxτj
(zτj )

∫
{uj<zτc

j
}
λαxcτj |xτj ,zτj

(uj)duj .

Etape 2 : sachant τ = (τ1, . . . , τl), tirer l fonctions extrêmes

φ+1 , . . . , φ
+
l

Etape 3 : indépendamment des étapes 1 et 2, simuler {φi(x)}i≥1
sous la contrainte Z−(x) ≤ z
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Description de l'algorithme

Etape 1 : tirer τ une partition aléatoire de {x1, . . . , xk}

Etape 2 : sachant τ = (τ1, . . . , τl), tirer l fonctions extrêmes

φ+1 , . . . , φ
+
l de distribution

P[φ+j (s) ∈ dv | z, τ ] ∝
{∫

1{u<zτc
j
}λ

α
(s,xcτj )|xτj ,zτj

(v,u)du

}
dv.

avec s ∈ (R2)m et m ∈ N, le nombre de nouveaux points où l'on

veut simuler.

Etape 3 : indépendamment des étapes 1 et 2, simuler {φi(x)}i≥1
sous la contrainte Z−(x) ≤ z
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Description de l'algorithme

Etape 1 : tirer τ une partition aléatoire de {x1, . . . , xk}

Etape 2 : sachant τ = (τ1, . . . , τl), tirer l fonctions extrêmes

φ+1 , . . . , φ
+
l

Etape 3 : indépendamment des étapes 1 et 2, simuler {φi(x)}i≥1
sous la contrainte Z−(x) ≤ z avec

Z− = max
i≥1
{φαi (x)| φαi (x) ≤ z}
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Annexe

λαs|x(u) =
wk+α−2
wk+m+α−2

√
|ΣsxΣ−1x |

[z′Σ−1x z](k+α)/2

[(u, z)′ Σ−1s,x (u, z)](k+m+α)/2
, (1)

avec

k = nombre de points conditionnants,

m = nombre de nouveaux points.
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Annexe

P[θ = τ | Z(x) = z] =
1

C(x, z)

|τ |∏
j=1

λxτj (zτj )×∫
{uj<zτc

j
}
λxcτj |xτj ,zτj

(uj)duj ,

=
η(τ)∑

τ∈Pn

η(τ)
.
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In�uency of the partition choice

Real Partition Estimated Partition Random Partition
α 2 6 2 6 2 6

CRPS 0.158 0.118 0.237 0.173 0.250 0.175
CRPSS 36.8% 32.8% 5.1% 1.2% 0 0

Table: Importance of a good estimation of the partition.
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