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SPDE

Stochastic partial differential equation

Whittle [1963]

If Z(x) is a stationary random function in d-space with Matérn covariance with
regularity ν, scale parameter κ and variance σ2 then Z(x) is solution of the SPDE

(κ2 −∆)α/2Z(x) = W(x), x ∈ Ω

with

∆ =

d∑
i=1

∂2

∂x2
i

is the Laplacian

W(x) is a standardized white noise process

α = ν + d/2

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν

Practically defined with Neumann type limit conditions on ∂Ω
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SPDE

Weak formulation
case α=2, d = 2

(
κ2 −∆

)
Z(x) = W(x)

Let

the inner product 〈f, g〉 =
∫

Ω
f(x)g(x)dx

φ an appropriate test function (typically C∞c )

By integrating over Ω

κ2〈Z, φ〉+ 〈∇Z,∇φ〉 = 〈W, φ〉
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SPDE

Discretization

We approximate the solution space by span{ψi(x), i = 1 . . . N}
Therefore Z(x) =

∑N
i=1 ziψi(x) and we get the equation

N∑
i=1

zi
(
κ2〈ψi, ψj〉+ 〈∇ψi,∇ψj〉

)
= 〈W, ψj〉, j = 1 . . . N

Denoting

Ci,j = 〈ψi, ψj〉 the mass matrix

Gi,j = 〈∇ψi,∇ψj〉 the stiffness matrix

K = κ2C +G

Z = (z1, . . . , zN ) is solution of the linear system

KZ = (WΨ),

where (WΨ)j = 〈W, ψj〉, j = 1 . . . N
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SPDE

Gaussian Markov random field

We clearly have
E(Z) = 0

and computing the covariance we get

KΣK = C,

where Σ is the covariance matrix of Z

The precision matrix of Z is therefore

Q = Σ−1 = KC−1K

In practice, C is approximated by a diagonal matrix, G and K are sparse, hence
Q is sparse
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SPDE

Gaussian Markov random field
Lindgren et al. [2011]

More generally, if the SPDE writes

P 1/2(−∆)Z = W(x), x ∈ Ω

Then the precision matrix is

Q = C1/2P (M)C1/2

where M = C−1/2GC−1/2

Hence mass lumping is essential
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SPDE

Lagrange P1 elements
The random function Z is approximated by

Z(x) =

N∑
i=1

ziψi(x)

where ψi is equal to 1 at vertice i and decreases linearly to 0 at the neighbouring
vertices (Lagrange P1 element)
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SPDE

Mass lumping
Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace

Cij = 〈ψi, ψj〉 =

∫
T

ψi(x)ψj(x)dx

by a quadrature formula

C̃ij =
∑
i

wiψi(ξi)ψj(ξi)

where ξi and wi are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then
C̃ is diagonal

In the case of Lagrange P1 elements the trapezoidal quadrature rule applies
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SPDE

Lagrange P2 finite element
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SPDE

Lagrange P2 finite element
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SPDE

Does mass lumping occur?
Cohen et al. [2001]

We need a sufficiently accurate quadrature formula

In each triangle T , it must be exact for P2

It must be symmetric

The set of quadrature points should be P2 unisolvent

The solution is
ws = 0 and wM = 1/3

The modified mass matrix is not positive definite!
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SPDE

New finite element space
Cohen et al. [2001]

The solution is to work with a slightly larger finite element space

P̃2 = P2 ⊕ [ψG]

where ψG is the ”bubble” function
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SPDE

Lagrange P̃2 finite element
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SPDE

Lagrange P̃2 finite element
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SPDE

Quadrature formula
Cohen et al. [2001]

To get the same accuracy with P̃2 as in standard P2 elements, the quadrature
formula should be exact in P3

This leads to the weights

ws = 1/20, wM = 2/15 and wG = 9/20

which is apparently well known as Simpson’s rule
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SPDE

Illustration

We compare how well the covariance is reproduced using P1 and P2 FEMs

We increase progressively the scale parameter to mimic the asymptotic behaviour

The regularity parameter is set to 1
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SPDE

Conclusion

Mass lumping is available for higher order finite elements at the cost of
expanded finite element space

The practical interest of using second order finite elements remains to
investigate

3D?
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SPDE

3D

10 degrees of freedom
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SPDE

3D

23 degrees of freedom!
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