Second order finite elements for the SPDE approach
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Stochastic partial differential equation

Whittle [1963]

If Z(z) is a stationary random function in d-space with Matérn covariance with
regularity v, scale parameter x and variance o2 then Z(z) is solution of the SPDE

(k2 = AN)*?Z(z) = W(z), = € Q

with

d_ 52
o A= Z 922 is the Laplacian
i=1 ¢

e W(z) is a standardized white noise process
e a=v+4d/2
° 02— I'(v)

T(v +d/2)(4m)d/2k2v

Practically defined with Neumann type limit conditions on OS2
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Weak formulation

case a=2, d = 2
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Weak formulation

case a=2, d = 2

Let
e the inner product (f,g) = [, f(
@ ¢ an appropriate test function (typlcally C)

By integrating over )

K(Z,¢) +(VZ,V) = (W, )
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. SPDE_______
Discretization

We approximate the solution space by span{;(z),i=1...N}
Therefore Z(z) = vazl z;;(z) and we get the equation

N
Z«Zz 1/1“1/); <V1/JZ,V1/)J)) = <W7¢j>,j =1...N
i=1
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Therefore Z(z) = vazl z;;(z) and we get the equation

N
Z«Zz 1/1“1/); <V1/JZ,V1/)J)) = <W7¢j>,j =1...N
i=1

Denoting
o C;; = (1;,1;) the mass matrix
o G, ; = (Vi;, V1)) the stiffness matrix
o K=r’C+G
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. SPDE_______
Discretization

We approximate the solution space by span{;(z),i=1...N}
Therefore Z(z) = vazl z;;(z) and we get the equation

N
Z«Zz 1/1“1/); <V1/JZ,V1/)J)) = <W7¢j>,j =1...N
i=1

Denoting
o C;;j = (¢;,1;) the mass matrix
o G, ; = (Vi;, V1)) the stiffness matrix
o K=r’C+G
Z = (z1,...,2n) is solution of the linear system
K7 = (W),

where (W\I])J = <Wa¢j>aj =1...N
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Gaussian Markov random field

We clearly have
E(Z)=0
and computing the covariance we get

KYK =C,

where ¥ is the covariance matrix of Z
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Gaussian Markov random field

We clearly have
E(Z)=0

and computing the covariance we get
KYK =C,

where ¥ is the covariance matrix of Z

The precision matrix of Z is therefore
Q=Y"'=KC'K

In practice, C' is approximated by a diagonal matrix, G and K are sparse, hence
@ is sparse
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Gaussian Markov random field
Lindgren et al. [2011]

More generally, if the SPDE writes
PY2(=A)Z =W(z), = €Q
Then the precision matrix is
Q= 01/2P<M)Cl/2
where M = C~1/2GC—1/?

Hence mass lumping is essential
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Lagrange P1 elements
The random function Z is approximated by

N
Z(z) = Z 2 (x)
i=1

where 1; is equal to 1 at vertice ¢ and decreases linearly to 0 at the neighbouring
vertices (Lagrange P; element)

S;
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SPDE

Lagrange P1 elements

The random function Z is approximated by

N

Z(z) = Z zitbi(x)

i=1

where 1); is equal to 1 at vertice ¢ and decreases linearly to 0 at the neighbouring
vertices (Lagrange P; element)

93
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Mass lumping
Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace

Cij = (Yi,y) = /Tﬂ%(if)%/fj(ﬂﬁ)dif
by a quadrature formula
52']' = Zwiiﬁi(fi)%(fi)

where & and w; are respectively the nodes and the weights
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Mass lumping
Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace
Ciy = (Wint) = [ ey (e)da
by a quadrature formula
Cij = Zwiiﬁi(fi)%(fi)
where & and w; are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then
C' is diagonal
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Mass lumping
Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace
Ciy = (Wint) = [ ey (e)da
by a quadrature formula
Cij = Zwiiﬁi(fi)%(fi)
where & and w; are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then
C' is diagonal

In the case of Lagrange P; elements the trapezoidal quadrature rule applies
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Lagrange P, finite element

Ss
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Lagrange P, finite element

IA\ L
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Does mass lumping occur?
Cohen et al. [2001]

We need a sufficiently accurate quadrature formula
@ In each triangle T', it must be exact for P,

@ |t must be symmetric

@ The set of quadrature points should be P, unisolvent
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Does mass lumping occur?
Cohen et al. [2001]

We need a sufficiently accurate quadrature formula
@ In each triangle T', it must be exact for P,
@ |t must be symmetric

@ The set of quadrature points should be P, unisolvent

The solution is
ws =0 and wy =1/3

The modified mass matrix is not positive definite!
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SPDE

New finite element space

Cohen et al. [2001]
The solution is to work with a slightly larger finite element space

Py =P, @ [9c]

where g is the "bubble” function
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Lagrange P, finite element

Ss

Go
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Lagrange P, finite element

D A
A A A
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Quadrature formula
Cohen et al. [2001]

To get the same accuracy with }32 as in standard P, elements, the quadrature
formula should be exact in Ps

This leads to the weights

ws = 1/20,wy; = 2/15 and wg = 9/20

which is apparently well known as Simpson's rule
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[llustration

We compare how well the covariance is reproduced using P; and P> FEMs
We increase progressively the scale parameter to mimic the asymptotic behaviour

The regularity parameter is set to 1
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SPDE

[llustration
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SPDE

[llustration
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SPDE

[llustration
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o P
« P2
—— True covariance

1.0

——a o

0.0

(Mines ParisTech) RESSTE 20 / 24



Conclusion

@ Mass lumping is available for higher order finite elements at the cost of
expanded finite element space
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Conclusion

@ Mass lumping is available for higher order finite elements at the cost of
expanded finite element space

@ The practical interest of using second order finite elements remains to
investigate
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Conclusion

@ Mass lumping is available for higher order finite elements at the cost of
expanded finite element space

@ The practical interest of using second order finite elements remains to
investigate

e 3D7?
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3D

10 degrees of freedom
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23 degrees of freedom!
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