Second order finite elements for the SPDE approach

T. Romary N. Desassis

Mines ParisTech, PSL University

RESSTE SPDE/INLA workshop

Stochastic partial differential equation

Whittle [1963]

If Z(x) is a stationary random function in *d*-space with Matérn covariance with regularity ν , scale parameter κ and variance σ^2 then Z(x) is solution of the SPDE

$$(\kappa^2 - \Delta)^{\alpha/2} Z(x) = \mathcal{W}(x), \ x \in \Omega$$

with

•
$$\Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$$
 is the Laplacian

• $\mathcal{W}(x)$ is a standardized white noise process

•
$$\alpha = \nu + d/2$$

•
$$\sigma^2 = \frac{\Gamma(\nu)}{\Gamma(\nu + d/2)(4\pi)^{d/2}\kappa^{2\nu}}$$

Practically defined with Neumann type limit conditions on $\partial \Omega$

Weak formulation case $\alpha = 2$, d = 2

$$(\kappa^2 - \Delta) Z(x) = \mathcal{W}(x)$$

Let

• the inner product
$$\langle f,g \rangle = \int_{\Omega} f(x)g(x) dx$$

• ϕ an appropriate **test** function (typically \mathcal{C}_c^{∞})

By integrating over Ω

$$\kappa^2 \langle Z, \phi \rangle + \langle \nabla Z, \nabla \phi \rangle = \langle \mathcal{W}, \phi \rangle$$

Weak formulation case $\alpha = 2$, d = 2

$$(\kappa^2 - \Delta) Z(x) = \mathcal{W}(x)$$

Let

• the inner product
$$\langle f,g \rangle = \int_{\Omega} f(x)g(x) \mathrm{d}x$$

• ϕ an appropriate **test** function (typically \mathcal{C}_c^{∞})

By integrating over $\boldsymbol{\Omega}$

$$\kappa^2 \langle Z, \phi \rangle + \langle \nabla Z, \nabla \phi \rangle = \langle \mathcal{W}, \phi \rangle$$

Discretization

We approximate the solution space by span{ $\psi_i(x), i = 1...N$ } Therefore $Z(x) = \sum_{i=1}^N z_i \psi_i(x)$ and we get the equation

$$\sum_{i=1}^{N} z_i \left(\kappa^2 \langle \psi_i, \psi_j \rangle + \langle \nabla \psi_i, \nabla \psi_j \rangle \right) = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$$

Denoting

• $C_{i,j} = \langle \psi_i, \psi_j \rangle$ the mass matrix

•
$$G_{i,j} = \langle \nabla \psi_i, \nabla \psi_j \rangle$$
 the stiffness matrix
• $K = \kappa^2 C + G$

 $\mathrm{Z}=(z_1,\ldots,z_N)$ is solution of the linear system

 $KZ = (W\Psi),$

where $(W\Psi)_j = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$

Discretization

We approximate the solution space by span{ $\psi_i(x), i = 1...N$ } Therefore $Z(x) = \sum_{i=1}^N z_i \psi_i(x)$ and we get the equation

$$\sum_{i=1}^{N} z_i \left(\kappa^2 \langle \psi_i, \psi_j \rangle + \langle \nabla \psi_i, \nabla \psi_j \rangle \right) = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$$

Denoting

•
$$C_{i,j} = \langle \psi_i, \psi_j \rangle$$
 the mass matrix
• $G_{i,j} = \langle \nabla \psi_i, \nabla \psi_j \rangle$ the stiffness matrix
• $K = \kappa^2 C + G$

 $\mathrm{Z}=(z_1,\ldots,z_N)$ is solution of the linear system

 $KZ = (W\Psi),$

where $(W\Psi)_j = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$

Discretization

We approximate the solution space by span{ $\psi_i(x), i = 1...N$ } Therefore $Z(x) = \sum_{i=1}^N z_i \psi_i(x)$ and we get the equation

$$\sum_{i=1}^{N} z_i \left(\kappa^2 \langle \psi_i, \psi_j \rangle + \langle \nabla \psi_i, \nabla \psi_j \rangle \right) = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$$

Denoting

•
$$C_{i,j} = \langle \psi_i, \psi_j \rangle$$
 the mass matrix
• $G_{i,j} = \langle \nabla \psi_i, \nabla \psi_j \rangle$ the stiffness matrix
• $K = \kappa^2 C + G$

 $Z = (z_1, \ldots, z_N)$ is solution of the linear system

$$KZ = (W\Psi),$$

where $(W\Psi)_j = \langle \mathcal{W}, \psi_j \rangle, j = 1 \dots N$

Gaussian Markov random field

We clearly have

$$\mathbb{E}(Z) = 0$$

and computing the covariance we get

 $K\Sigma K = C,$

where Σ is the covariance matrix of Z

The **precision** matrix of Z is therefore

$$Q = \Sigma^{-1} = KC^{-1}K$$

In practice, C is approximated by a **diagonal** matrix, G and K are **sparse**, hence Q is **sparse**

Gaussian Markov random field

We clearly have

$$\mathbb{E}(Z) = 0$$

and computing the covariance we get

 $K\Sigma K = C,$

where $\boldsymbol{\Sigma}$ is the covariance matrix of \boldsymbol{Z}

The **precision** matrix of Z is therefore

$$Q = \Sigma^{-1} = KC^{-1}K$$

In practice, C is approximated by a **diagonal** matrix, G and K are **sparse**, hence Q is **sparse**

Gaussian Markov random field

Lindgren et al. [2011]

More generally, if the SPDE writes

$$P^{1/2}(-\Delta)Z = \mathcal{W}(x), \ x \in \Omega$$

Then the precision matrix is

$$Q = C^{1/2} P(M) C^{1/2}$$

where $M = C^{-1/2} G C^{-1/2}$

Hence mass lumping is essential

Lagrange P1 elements

The random function Z is approximated by

$$Z(x) = \sum_{i=1}^{N} z_i \psi_i(x)$$

where ψ_i is equal to 1 at vertice *i* and decreases linearly to 0 at the neighbouring vertices (Lagrange P_1 element)

Lagrange P1 elements

The random function Z is approximated by

$$Z(x) = \sum_{i=1}^{N} z_i \psi_i(x)$$

where ψ_i is equal to 1 at vertice *i* and decreases linearly to 0 at the neighbouring vertices (Lagrange P_1 element)

Mass lumping Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace

$$C_{ij} = \langle \psi_i, \psi_j \rangle = \int_T \psi_i(x) \psi_j(x) dx$$

by a quadrature formula

$$\widetilde{C}_{ij} = \sum_{i} w_i \psi_i(\xi_i) \psi_j(\xi_i)$$

where ξ_i and w_i are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then \widetilde{C} is diagonal

In the case of Lagrange P_1 elements the trapezoidal quadrature rule applies

Mass lumping Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace

$$C_{ij} = \langle \psi_i, \psi_j \rangle = \int_T \psi_i(x) \psi_j(x) dx$$

by a quadrature formula

$$\widetilde{C}_{ij} = \sum_{i} w_i \psi_i(\xi_i) \psi_j(\xi_i)$$

where ξ_i and w_i are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then \widetilde{C} is diagonal

In the case of Lagrange P_1 elements the trapezoidal quadrature rule applies

Mass lumping Cohen et al. [2001]

Let T a triangle, to get a diagonal mass matrix we replace

$$C_{ij} = \langle \psi_i, \psi_j \rangle = \int_T \psi_i(x) \psi_j(x) dx$$

by a quadrature formula

$$\widetilde{C}_{ij} = \sum_{i} w_i \psi_i(\xi_i) \psi_j(\xi_i)$$

where ξ_i and w_i are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then \widetilde{C} is diagonal

In the case of Lagrange P_1 elements the trapezoidal quadrature rule applies

Lagrange P_2 finite element

Lagrange P_2 finite element

Ψ12

Ψ23

Does mass lumping occur? Cohen et al. [2001]

We need a sufficiently accurate quadrature formula

- In each triangle T, it must be exact for P_2
- It must be symmetric
- The set of quadrature points should be P_2 unisolvent

The solution is

 $w_s = 0$ and $w_M = 1/3$

The modified mass matrix is not positive definite!

Does mass lumping occur? Cohen et al. [2001]

We need a sufficiently accurate quadrature formula

- In each triangle T, it must be exact for P_2
- It must be symmetric
- The set of quadrature points should be P_2 unisolvent

The solution is

 $w_s = 0$ and $w_M = 1/3$

The modified mass matrix is not positive definite!

New finite element space

Cohen et al. [2001]

The solution is to work with a slightly larger finite element space

$$\widetilde{P}_2 = P_2 \oplus [\psi_G]$$

where ψ_G is the "bubble" function

Lagrange \widetilde{P}_2 finite element

Lagrange \widetilde{P}_2 finite element

Quadrature formula

Cohen et al. [2001]

To get the same accuracy with \widetilde{P}_2 as in standard P_2 elements, the quadrature formula should be exact in P_3

This leads to the weights

$$w_s = 1/20, w_M = 2/15$$
 and $w_G = 9/20$

which is apparently well known as Simpson's rule

We compare how well the covariance is reproduced using P_1 and P_2 FEMs

We increase progressively the scale parameter to mimic the asymptotic behaviour

The regularity parameter is set to 1

Illustration

Scale = 1.0

Illustration

Scale = 2.0

Illustration

Scale = 3.0

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate

• 3D?

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate

• 3D?

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate

• 3D?

3D

10 degrees of freedom

3D

23 degrees of freedom!

- Gary Cohen, Patrick Joly, Jean E Roberts, and Nathalie Tordjman. Higher order triangular finite elements with mass lumping for the wave equation. *SIAM Journal on Numerical Analysis*, 38(6):2047–2078, 2001.
- Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society: Series B*, 73(4):423–498, 2011. ISSN 1467-9868.
- Peter Whittle. Stochastic-processes in several dimensions. Bulletin of the International Statistical Institute, 40(2):974–994, 1963.