Second order finite elements for the SPDE approach

T. Romary N. Desassis

Mines ParisTech, PSL University

RESSTE SPDE/INLA workshop

Stochastic partial differential equation

Whittle [1963]

If $Z(x)$ is a stationary random function in d-space with Matérn covariance with regularity ν, scale parameter κ and variance σ^{2} then $Z(x)$ is solution of the SPDE

$$
\left(\kappa^{2}-\Delta\right)^{\alpha / 2} Z(x)=\mathcal{W}(x), x \in \Omega
$$

with

- $\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian
- $\mathcal{W}(x)$ is a standardized white noise process
- $\alpha=\nu+d / 2$
- $\sigma^{2}=\frac{\Gamma(\nu)}{\Gamma(\nu+d / 2)(4 \pi)^{d / 2} \kappa^{2 \nu}}$

Practically defined with Neumann type limit conditions on $\partial \Omega$

Weak formulation

case $\alpha=2, d=2$

$$
\left(\kappa^{2}-\Delta\right) Z(x)=\mathcal{W}(x)
$$

- the inner product $\langle f, g\rangle=\int_{\Omega} f(x) g(x) \mathrm{d} x$
- ϕ an appropriate test function (typically \mathcal{C}_{c}^{∞})

By integrating over Ω

$$
\kappa^{2}\langle Z, \phi\rangle+\langle\nabla Z, \nabla \phi\rangle=\langle\mathcal{W}, \phi\rangle
$$

Weak formulation

```
case \alpha=2,d=2
```

$$
\left(\kappa^{2}-\Delta\right) Z(x)=\mathcal{W}(x)
$$

Let

- the inner product $\langle f, g\rangle=\int_{\Omega} f(x) g(x) \mathrm{d} x$
- ϕ an appropriate test function (typically \mathcal{C}_{c}^{∞})

By integrating over Ω

$$
\kappa^{2}\langle Z, \phi\rangle+\langle\nabla Z, \nabla \phi\rangle=\langle\mathcal{W}, \phi\rangle
$$

Discretization

We approximate the solution space by $\operatorname{span}\left\{\psi_{i}(x), i=1 \ldots N\right\}$ Therefore $Z(x)=\sum_{i=1}^{N} z_{i} \psi_{i}(x)$ and we get the equation

$$
\sum_{i=1}^{N} z_{i}\left(\kappa^{2}\left\langle\psi_{i}, \psi_{j}\right\rangle+\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle\right)=\left\langle\mathcal{W}, \psi_{j}\right\rangle, j=1 \ldots N
$$

Denoting

- $C_{i, j}=\left\langle\psi_{i}, \psi_{j}\right\rangle$ the mass matrix
- $G_{i, j}=\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$ the stiffness matrix
$\mathrm{Z}=\left(z_{1}, \ldots, z_{N}\right)$ is solution of the linear system

Discretization

We approximate the solution space by $\operatorname{span}\left\{\psi_{i}(x), i=1 \ldots N\right\}$
Therefore $Z(x)=\sum_{i=1}^{N} z_{i} \psi_{i}(x)$ and we get the equation

$$
\sum_{i=1}^{N} z_{i}\left(\kappa^{2}\left\langle\psi_{i}, \psi_{j}\right\rangle+\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle\right)=\left\langle\mathcal{W}, \psi_{j}\right\rangle, j=1 \ldots N
$$

Denoting

- $C_{i, j}=\left\langle\psi_{i}, \psi_{j}\right\rangle$ the mass matrix
- $G_{i, j}=\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$ the stiffness matrix
- $K=\kappa^{2} C+G$

Discretization

We approximate the solution space by $\operatorname{span}\left\{\psi_{i}(x), i=1 \ldots N\right\}$ Therefore $Z(x)=\sum_{i=1}^{N} z_{i} \psi_{i}(x)$ and we get the equation

$$
\sum_{i=1}^{N} z_{i}\left(\kappa^{2}\left\langle\psi_{i}, \psi_{j}\right\rangle+\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle\right)=\left\langle\mathcal{W}, \psi_{j}\right\rangle, j=1 \ldots N
$$

Denoting

- $C_{i, j}=\left\langle\psi_{i}, \psi_{j}\right\rangle$ the mass matrix
- $G_{i, j}=\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$ the stiffness matrix
- $K=\kappa^{2} C+G$
$\mathrm{Z}=\left(z_{1}, \ldots, z_{N}\right)$ is solution of the linear system

$$
K \mathrm{Z}=(W \Psi),
$$

where $(W \Psi)_{j}=\left\langle\mathcal{W}, \psi_{j}\right\rangle, j=1 \ldots N$

Gaussian Markov random field

We clearly have

$$
\mathbb{E}(Z)=0
$$

and computing the covariance we get

$$
K \Sigma K=C,
$$

where Σ is the covariance matrix of Z
The precision matrix of Z is therefore

In practice, C is approximated by a diagonal matrix, G and K are sparse, hence Q is sparse

Gaussian Markov random field

We clearly have

$$
\mathbb{E}(Z)=0
$$

and computing the covariance we get

$$
K \Sigma K=C,
$$

where Σ is the covariance matrix of Z
The precision matrix of Z is therefore

$$
Q=\Sigma^{-1}=K C^{-1} K
$$

In practice, C is approximated by a diagonal matrix, G and K are sparse, hence Q is sparse

Gaussian Markov random field

Lindgren et al. [2011]

More generally, if the SPDE writes

$$
P^{1 / 2}(-\Delta) Z=\mathcal{W}(x), x \in \Omega
$$

Then the precision matrix is

$$
Q=C^{1 / 2} P(M) C^{1 / 2}
$$

where $M=C^{-1 / 2} G C^{-1 / 2}$
Hence mass lumping is essential

Lagrange P1 elements

The random function Z is approximated by

$$
Z(x)=\sum_{i=1}^{N} z_{i} \psi_{i}(x)
$$

where ψ_{i} is equal to 1 at vertice i and decreases linearly to 0 at the neighbouring vertices (Lagrange P_{1} element)

Lagrange P1 elements

The random function Z is approximated by

$$
Z(x)=\sum_{i=1}^{N} z_{i} \psi_{i}(x)
$$

where ψ_{i} is equal to 1 at vertice i and decreases linearly to 0 at the neighbouring vertices (Lagrange P_{1} element)
ϕ_{1}

ϕ_{2}

ϕ_{3}

Mass lumping

Cohen et al. [2001]
Let T a triangle, to get a diagonal mass matrix we replace

$$
C_{i j}=\left\langle\psi_{i}, \psi_{j}\right\rangle=\int_{T} \psi_{i}(x) \psi_{j}(x) d x
$$

by a quadrature formula

$$
\widetilde{C}_{i j}=\sum_{i} w_{i} \psi_{i}\left(\xi_{i}\right) \psi_{j}\left(\xi_{i}\right)
$$

where ξ_{i} and w_{i} are respectively the nodes and the weights

Mass lumping

Cohen et al. [2001]
Let T a triangle, to get a diagonal mass matrix we replace

$$
C_{i j}=\left\langle\psi_{i}, \psi_{j}\right\rangle=\int_{T} \psi_{i}(x) \psi_{j}(x) d x
$$

by a quadrature formula

$$
\widetilde{C}_{i j}=\sum_{i} w_{i} \psi_{i}\left(\xi_{i}\right) \psi_{j}\left(\xi_{i}\right)
$$

where ξ_{i} and w_{i} are respectively the nodes and the weights
If the quadrature points coincide with the nodes of the finite element space, then \widetilde{C} is diagonal

Mass lumping

Cohen et al. [2001]
Let T a triangle, to get a diagonal mass matrix we replace

$$
C_{i j}=\left\langle\psi_{i}, \psi_{j}\right\rangle=\int_{T} \psi_{i}(x) \psi_{j}(x) d x
$$

by a quadrature formula

$$
\widetilde{C}_{i j}=\sum_{i} w_{i} \psi_{i}\left(\xi_{i}\right) \psi_{j}\left(\xi_{i}\right)
$$

where ξ_{i} and w_{i} are respectively the nodes and the weights

If the quadrature points coincide with the nodes of the finite element space, then \widetilde{C} is diagonal

In the case of Lagrange P_{1} elements the trapezoidal quadrature rule applies

Lagrange P_{2} finite element

Lagrange P_{2} finite element

Does mass lumping occur?

Cohen et al. [2001]

We need a sufficiently accurate quadrature formula

- In each triangle T, it must be exact for P_{2}
- It must be symmetric
- The set of quadrature points should be P_{2} unisolvent

Does mass lumping occur?

Cohen et al. [2001]

We need a sufficiently accurate quadrature formula

- In each triangle T, it must be exact for P_{2}
- It must be symmetric
- The set of quadrature points should be P_{2} unisolvent

The solution is

$$
w_{s}=0 \text { and } w_{M}=1 / 3
$$

The modified mass matrix is not positive definite!

New finite element space

Cohen et al. [2001]
The solution is to work with a slightly larger finite element space

$$
\widetilde{P}_{2}=P_{2} \oplus\left[\psi_{G}\right]
$$

where ψ_{G} is the "bubble" function
ψ_{G}

Lagrange \widetilde{P}_{2} finite element

Lagrange \widetilde{P}_{2} finite element

Quadrature formula

Cohen et al. [2001]

To get the same accuracy with \widetilde{P}_{2} as in standard P_{2} elements, the quadrature formula should be exact in P_{3}

This leads to the weights

$$
w_{s}=1 / 20, w_{M}=2 / 15 \text { and } w_{G}=9 / 20
$$

which is apparently well known as Simpson's rule

Illustration

We compare how well the covariance is reproduced using P_{1} and P_{2} FEMs
We increase progressively the scale parameter to mimic the asymptotic behaviour
The regularity parameter is set to 1

Illustration

Scale $=1.0$

Illustration

Scale $=\mathbf{2 . 0}$

Illustration

Scale $=3.0$

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate

Conclusion

- Mass lumping is available for higher order finite elements at the cost of expanded finite element space
- The practical interest of using second order finite elements remains to investigate
- 3D?

3D

10 degrees of freedom

3D

23 degrees of freedom!

References

Gary Cohen, Patrick Joly, Jean E Roberts, and Nathalie Tordjman. Higher order triangular finite elements with mass lumping for the wave equation. SIAM Journal on Numerical Analysis, 38(6):2047-2078, 2001.
Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B, 73(4):423-498, 2011. ISSN 1467-9868.
Peter Whittle. Stochastic-processes in several dimensions. Bulletin of the International Statistical Institute, 40(2):974-994, 1963.

