Point processes- - abstraction and practical relevance

Janine Illian
University of St Andrews, Scotland

November 7, 2018

some background - my interests

spatial statistics, in particular, spatial and spatio-temporal point process modelling

some background - my interests

spatial statistics, in particular, spatial and spatio-temporal point process modelling

vision

development of methodology that is

- practically relevant
- realistically complex and
- accessible

some background - my interests

spatial statistics, in particular,
spatial and spatio-temporal point process modelling

vision

development of methodology that is

- practically relevant
- realistically complex and
- accessible
perspective: applications in ecology and beyond

spatial point processes

spatial point processes

spatial point processes

Janine Illian
point processes - abstraction

spatial point processes

spatial point processes

\Rightarrow identifying and explaining structures in point patterns

spatial point processes

\Rightarrow identifying and explaining structures in point patterns stochastic models: spatial point processes

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

- examples:
- cancer cells
- plants or animals
- earthquakes
- terrorist attacks

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

- examples:
- cancer cells
- plants or animals
- earthquakes
- terrorist attacks

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

- examples:
- cancer cells
- plants or animals
- earthquakes
- terrorist attacks

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

- examples:
- cancer cells
- plants or animals

- earthquakes
- terrorist attacks

spatial point processes - what are they?

models of spatial patterns:
\Rightarrow modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

understanding mechanisms that generated the pattern

- examples:
- cancer cells

- plants or animals
- earthquakes
- terrorist attacks

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available
- spatial information:
- spatial structure contains information

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available
- spatial information:
- spatial structure contains information
- averaging across space
\Rightarrow information loss

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available
- spatial information:
- spatial structure contains information
- averaging across space
\Rightarrow information loss
- second order structures (co-occurrence) provide additional information

spatial point processes - why are they important?

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available
- spatial information:
- spatial structure contains information
- averaging across space
\Rightarrow information loss
- second order structures (co-occurrence) provide additional information

applications: medicine and health sciences, ecology, environmental sciences, international relations (terrorism studies), geology

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

- point pattern observed in observation window W vector of x - and y-coordinates (if $W \subset \mathbb{R}^{2}$)

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

- point pattern observed in observation window W vector of x - and y-coordinates (if $W \subset \mathbb{R}^{2}$)
- realisations have different lengths!

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

- point pattern observed in observation window W vector of x - and y-coordinates (if $W \subset \mathbb{R}^{2}$)
- realisations have different lengths!
- what mathematical object could represent these?

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

- point pattern observed in observation window W vector of x - and y-coordinates (if $W \subset \mathbb{R}^{2}$)
- realisations have different lengths!
- what mathematical object could represent these?
- can be described by assigning a count of points to every subset in W; a measure!

spatial point processes - why are they complex?

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

- point pattern observed in observation window W vector of x - and y-coordinates (if $W \subset \mathbb{R}^{2}$)
- realisations have different lengths!
- what mathematical object could represent these?
- can be described by assigning a count of points to every subset in W; a measure!
\Rightarrow point process N is a random variable, whose values are measures
\Rightarrow a random (counting) measure

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
\Rightarrow standard statistical methods not readily available

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
\Rightarrow standard statistical methods not readily available
- in addition: spatial models - dependence structures
\Rightarrow computationally expensive

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
\Rightarrow standard statistical methods not readily available
- in addition: spatial models - dependence structures
\Rightarrow computationally expensive

as a result...

- mainly discussed in theoretical literature

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
\Rightarrow standard statistical methods not readily available
- in addition: spatial models - dependence structures
\Rightarrow computationally expensive

as a result...

- mainly discussed in theoretical literature
- simplifying assumptions: e.g. small patterns, in rectangular observation windows, rarely considering marks, every "point" has been seen and detected

spatial point processes - what are the challenges?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
\Rightarrow standard statistical methods not readily available
- in addition: spatial models - dependence structures
\Rightarrow computationally expensive

as a result...

- mainly discussed in theoretical literature
- simplifying assumptions: e.g. small patterns, in rectangular observation windows, rarely considering marks, every "point" has been seen and detected
\Rightarrow models too far removed from reality
\Rightarrow rarely used to answer scientific questions

spatial point processes in ecology

in ecology

- strong interest in interactions among individual organisms and environment

spatial point processes in ecology

in ecology

- strong interest in interactions among individual organisms and environment
- individuals exist - and interact - in space and time

spatial point processes in ecology

in ecology

- strong interest in interactions among individual organisms and environment
- individuals exist - and interact - in space and time
\Rightarrow data: spatial (spatio-temporal) point patterns
in ecology
- strong interest in interactions among individual organisms and environment
- individuals exist - and interact - in space and time
\Rightarrow data: spatial (spatio-temporal) point patterns
\Rightarrow spatial point process methodology should be highly relevant!
however...
- few ecologists aware of spatial point process methodology
\Rightarrow not part of the standard statistical toolbox

WHY?

WHY?

In the end it's just a bunch of dots, isn't it?

aim

- relevant and
- usable spatial point process methodology

aim

- relevant and
- usable spatial point process methodology
approach: exploiting computational efficiency to construct realistically complex models - using INLA

INLA (integrated nested Laplace approximation) is an alternative to MCMC

- much, much faster
- implemented in R-INLA
- suitable for a specific (but very large!) class of models

INLA (integrated nested Laplace approximation) is an alternative to MCMC

- much, much faster
- implemented in R-INLA
- suitable for a specific (but very large!) class of models based on
- Gaussian Markov random fields
- Latent Gaussian models
- Laplace approximations

INLA (integrated nested Laplace approximation) is an alternative to MCMC

- much, much faster
- implemented in R-INLA
- suitable for a specific (but very large!) class of models based on
- Gaussian Markov random fields
- Latent Gaussian models
- Laplace approximations
\Rightarrow very nice tool for Bayesian inference

INLA (integrated nested Laplace approximation) is an alternative to MCMC

- much, much faster
- implemented in R-INLA
- suitable for a specific (but very large!) class of models based on
- Gaussian Markov random fields
- Latent Gaussian models
- Laplace approximations
\Rightarrow very nice tool for Bayesian inference
\Rightarrow computationally efficient model fitting, wide range of models
- quick
- accurate
for spatial point processes

INLA to the rescue...

for spatial point processes

- flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s)=\exp (Z(s)), Z$ Gaussian random field)

INLA to the rescue...

for spatial point processes

- flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s)=\exp (Z(s)), Z$ Gaussian random field)
- Gaussian random field: approximate flexibly as solution to stochastic partial differential equation (SPDE)

INLA to the rescue...

for spatial point processes

- flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s)=\exp (Z(s)), Z$ Gaussian random field)
- Gaussian random field: approximate flexibly as solution to stochastic partial differential equation (SPDE)
in essence:
\Rightarrow computational efficiency and flexibility makes it realistic to fit complex models

point process modelling...

spatial point processes

point process modelling...

spatial point processes

- mathematically complex objects (yeah!)

point process modelling...

spatial point processes

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)

point process modelling...

spatial point processes

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)
\Rightarrow we can (even have to!) simplify... a lot... (yeah!)

point process modelling...

spatial point processes

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)
\Rightarrow we can (even have to!) simplify... a lot... (yeah!)

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

- it's enough to show that we can fit some models to some data

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

- it's enough to show that we can fit some models to some data
- we can simply assume what our pattern "lives" in a square or rectangle

ignoring the real world - point process modelling

this makes live easy...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

- it's enough to show that we can fit some models to some data
- we can simply assume what our pattern "lives" in a square or rectangle

ignoring the real world - point process modelling

most crucially: we don't need to think about practical issues

- data collection

ignoring the real world - point process modelling

most crucially: we don't need to think about practical issues

- data collection
- model interpretation

ignoring the real world - point process modelling

most crucially: we don't need to think about practical issues

- data collection
- model interpretation
- model assessment

Meanwhile, in the real world...

Meanwhile, in the real world...

...people are developing fancy data collection methods...

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...

Meanwhile, in the real world...

...people are developing fancy data collection methods... \Rightarrow many of these provide spatially explicit data...
For example:

- video surveys

Meanwhile, in the real world...

...people are developing fancy data collection methods... \Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...
\Rightarrow we can collect data on (large) animals (\neq waterstriders)

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...
\Rightarrow we can collect data on (large) animals (\neq waterstriders)

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...
\Rightarrow we can collect data on (large) animals (\neq waterstriders)

\Rightarrow data set life in big and complex observation areas

Meanwhile, in the real world...

...people are developing fancy data collection methods...
\Rightarrow many of these provide spatially explicit data...
For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...
\Rightarrow we can collect data on (large) animals (\neq waterstriders)

\Rightarrow data set life in big and complex observation areas
\Rightarrow data have a complex observation process

by contrast...

What I did 15 years ago:

and so we move on...

What we are discussing 15 years later:

Meanwhile, in the real world...

Meanwhile, in the real world...

...people are developing computationally efficient methodology...

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much
- we can now model efficiently and more flexibly

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much
- we can now model efficiently and more flexibly
e.g. using log Gaussian Cox processes and INLA+SPDE we can

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much
- we can now model efficiently and more flexibly
e.g. using log Gaussian Cox processes and INLA+SPDE we can
- flexibly jointly model marks and (spatial) covariates along with spatial pattern

Meanwhile, in the real world...

...people are developing computationally efficient methodology... \Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much
- we can now model efficiently and more flexibly
e.g. using log Gaussian Cox processes and INLA+SPDE we can
- flexibly jointly model marks and (spatial) covariates along with spatial pattern
- point pattern reflects observation process/ take it into account

Meanwhile, in the real world...

...people are developing computationally efficient methodology...
\Rightarrow we can now fit more (realistically) complex models...

- we don't need to simplify as much
- we can now model efficiently and more flexibly
e.g. using log Gaussian Cox processes and INLA+SPDE we can
- flexibly jointly model marks and (spatial) covariates along with spatial pattern
- point pattern reflects observation process/ take it into account
- model on complex domains
- the sphere $=$ the earth
- observation areas with barriers (islands, archipelagos...)

Flexible...

- we can now model more flexibly

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data...

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....
- we might have to think about model interpretation and inference

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....
- we might have to think about model interpretation and inference shudder....

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....
- we might have to think about model interpretation and inference shudder....
- we might have to think about model assessment for complex models...

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....
- we might have to think about model interpretation and inference shudder....
- we might have to think about model assessment for complex models... shudder....

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

Oh no...

- we can now work with real data... shudder....
- we might have to think about data collection issues shudder....
- we might have to think about model interpretation and inference shudder....
- we might have to think about model assessment for complex models... shudder....
- we need to speak to other scientists...

Examples...

aim

- data collections issues - distance sampling

Examples...

aim

- data collections issues - distance sampling
- model interpretation - back to the rainforests

Examples...

aim

- data collections issues - distance sampling
- model interpretation - back to the rainforests
- model assessment - discussion

In practice, especially in animal studies, observation area of interest is often too big to sample entirely. thinned point process
detection probability $\mathrm{p}=1$

detection probability $\mathrm{p}<1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

Area of interest is too big to sample entirely.
detection probability $\mathrm{p}=1$

distance sampling data

distance sampling data

thinned point process!

- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers ($>$ twice the size of Europe!) was surveyed (transects)
- blue whale sightings
- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers ($>$ twice the size of Europe!) was surveyed (transects)
- blue whale sightings
linear predictor depends on:
- detection function
- (SPDE-based) model for animal intensity
- integration scheme accounts for observation process

- spatio-temporal point process model

- spatio-temporal point process model
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates

distance sampling... nice...

- spatio-temporal point process model
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates
- elegant, integrated approach
- other data collection approaches may be seeing as operations on underlying point process
- implemented in inlabru (https://sites.google.com/inlabru.org/inlabru)

inference

the rainforests...

inference

the rainforests...
habitat association modelling:

inference

the rainforests...

habitat association modelling:

- interest in understanding the mechanisms that allow different species to coexist

inference

the rainforests...

habitat association modelling:

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems

inference

the rainforests...

habitat association modelling:

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems
- model the pattern formed by individuals in space relative to local conditions - soil covariates

inference

the rainforests...

habitat association modelling:

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems
- model the pattern formed by individuals in space relative to local conditions - soil covariates
- common approach: log-Gaussian Cox process

Model interpretation... and more

random intensity: $\Lambda(s)=\exp \{\eta(s)\}$, where $\left\{\eta(s): s \in \mathbb{R}^{2}\right\}$ is a latent Gaussian random field (GRF)

Model interpretation... and more

random intensity: $\Lambda(s)=\exp \{\eta(s)\}$, where $\left\{\eta(s): s \in \mathbb{R}^{2}\right\}$ is a latent Gaussian random field (GRF)
can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$
\begin{equation*}
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega \tag{1}
\end{equation*}
$$

Ω two-dimensional study region;

Model interpretation... and more

random intensity: $\Lambda(s)=\exp \{\eta(s)\}$, where $\left\{\eta(s): s \in \mathbb{R}^{2}\right\}$ is a latent Gaussian random field (GRF)
can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$
\begin{equation*}
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega \tag{1}
\end{equation*}
$$

Ω two-dimensional study region;
β_{0} intercept, $\left\{\beta_{j}\right\}_{j=1}^{n_{\beta}}$ linear effects of covariates $\left\{z_{j}(s), s \in \Omega\right\}_{j=1}^{n_{\beta}}$

Model interpretation... and more

random intensity: $\Lambda(s)=\exp \{\eta(s)\}$, where $\left\{\eta(s): s \in \mathbb{R}^{2}\right\}$ is a latent Gaussian random field (GRF)
can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$
\begin{equation*}
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega \tag{1}
\end{equation*}
$$

Ω two-dimensional study region;
β_{0} intercept, $\left\{\beta_{j}\right\}_{j=1}^{n_{\beta}}$ linear effects of covariates $\left\{z_{j}(s), s \in \Omega\right\}_{j=1}^{n_{\beta}}$ spatial effects:
spatially-correlated random field $\boldsymbol{u}=\{u(s), s \in \Omega\}$: accounting for spatial autocorrelation

Model interpretation... and more

random intensity: $\Lambda(s)=\exp \{\eta(s)\}$, where $\left\{\eta(s): s \in \mathbb{R}^{2}\right\}$ is a latent Gaussian random field (GRF)
can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$
\begin{equation*}
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega \tag{1}
\end{equation*}
$$

Ω two-dimensional study region;
β_{0} intercept, $\left\{\beta_{j}\right\}_{j=1}^{n_{\beta}}$ linear effects of covariates $\left\{z_{j}(s), s \in \Omega\right\}_{j=1}^{n_{\beta}}$ spatial effects:
spatially-correlated random field $\boldsymbol{u}=\{u(s), s \in \Omega\}$: accounting for spatial autocorrelation
spatially-unstructured random field $\boldsymbol{v}=\{v(s), s \in \Omega\}$: error field accounting for over-dispersion or clustering within grid cells

why.

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
\Rightarrow we need the spatial fields to avoid spuriously significant covariates!

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
\Rightarrow we need the spatial fields to avoid spuriously significant covariates!

BUT - on the other hand

why.

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
\Rightarrow we need the spatial fields to avoid spuriously significant covariates!

BUT - on the other hand

- properties of the spatial field determine the smoothness of the spatial field

why.

Why do we need the spatial effects?

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
\Rightarrow we need the spatial fields to avoid spuriously significant covariates!

BUT - on the other hand

- properties of the spatial field determine the smoothness of the spatial field
- choose well to avoid under- or overfitting!

Bayesian context...

- priors have to be chosen

Bayesian context...

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field

Bayesian context...

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field
\Rightarrow prior choice impacts on inference and interpretation overfitting versus not accounting for autocorrelation

Bayesian context...

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field
\Rightarrow prior choice impacts on inference and interpretation overfitting versus not accounting for autocorrelation
assign (typically Gamma) priors to the precision (inverse variance) parameters of the two random fields

prior choice...

issues:

$1 u(s)$ and $v(s)$ are not independent
2 prior choice is difficult as the priors cannot be easily communicated - or understood

3 new priors have to be chosen if grid resolution changes

prior choice...

issues:

$1 u(s)$ and $v(s)$ are not independent
2 prior choice is difficult as the priors cannot be easily communicated - or understood

3 new priors have to be chosen if grid resolution changes approach:

1 consider $u(s)$ and $v(s)$ as a unit and control relative importance of them

prior choice...

issues:

$1 u(s)$ and $v(s)$ are not independent
2 prior choice is difficult as the priors cannot be easily communicated - or understood

3 new priors have to be chosen if grid resolution changes approach:

1 consider $u(s)$ and $v(s)$ as a unit and control relative importance of them

2 make prior choice transparent and problem-driven

prior choice...

issues:

$1 u(s)$ and $v(s)$ are not independent
2 prior choice is difficult as the priors cannot be easily communicated - or understood

3 new priors have to be chosen if grid resolution changes approach:

1 consider $u(s)$ and $v(s)$ as a unit and control relative importance of them

2 make prior choice transparent and problem-driven
3 scale spatially structured effect in terms of generalised variance

solutions...

make prior choice transparent and problem-driven first step:

solutions...

make prior choice transparent and problem-driven first step:
Choose a slightly different model:

solutions...

make prior choice transparent and problem-driven first step:
Choose a slightly different model: instead of

$$
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega
$$

solutions...

make prior choice transparent and problem-driven first step:
Choose a slightly different model: instead of

$$
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega
$$

now consider
$\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+\frac{1}{\sqrt{\tau}}\left(\sqrt{\phi} u^{*}(s)+\sqrt{1-\phi} v(s)\right), \quad \phi \in(0,1)$.
$\boldsymbol{u}^{*}=\left\{u^{*}(s), s \in \Omega\right\}:$ scaled spatial random field

solutions.

make prior choice transparent and problem-driven first step:
Choose a slightly different model: instead of

$$
\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+u(s)+v(s), \quad s \in \Omega
$$

now consider
$\eta(s)=\beta_{0}+\sum_{j=1}^{n_{\beta}} \beta_{j} z_{j}(s)+\frac{1}{\sqrt{\tau}}\left(\sqrt{\phi} u^{*}(s)+\sqrt{1-\phi} v(s)\right), \quad \phi \in(0,1)$.
$\boldsymbol{u}^{*}=\left\{u^{*}(s), s \in \Omega\right\}$: scaled spatial random field hyperparameters τ and ϕ : assign penalised complexity (PC) priors

make prior choice transparent and problem-driven

second step:

make prior choice transparent and problem-driven

second step: re-think priors:

make prior choice transparent and problem-driven

second step: re-think priors:
recall: priors determine the smoothness of the random field

make prior choice transparent and problem-driven

second step: re-think priors:
recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting

make prior choice transparent and problem-driven

second step: re-think priors:
recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting
approaches:
- play around - choose some arbitrary prior value and change it and check what happens until you are happy

make prior choice transparent and problem-driven

second step: re-think priors:
recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting
approaches:
- play around - choose some arbitrary prior value and change it and check what happens until you are happy
- automize - choose a criterion (e.g. "degree of wigglyness") and penalise violation of that criterion

make prior choice transparent and problem-driven

second step: re-think priors:
recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting approaches:
- play around - choose some arbitrary prior value and change it and check what happens until you are happy
- automize - choose a criterion (e.g. "degree of wigglyness") and penalise violation of that criterion
\Rightarrow we don't know what the ideal smoothness/wigglyness is...
here: penalise something different - deviation from a base model

make prior choice transparent and problem-driven

penalise deviation from a base model...
Sequence of two base models here:
1 model with covariates, no random field

make prior choice transparent and problem-driven

penalise deviation from a base model...
Sequence of two base models here:
1 model with covariates, no random field
2 model with covariates and unstructured field, accounting for some local overdispersion

make prior choice transparent and problem-driven

penalise deviation from a base model...
Sequence of two base models here:
1 model with covariates, no random field
2 model with covariates and unstructured field, accounting for some local overdispersion
\Rightarrow we have a parameter that reflects how close we are to each of the two base models

make prior choice transparent and problem-driven

penalise deviation from a base model...
Sequence of two base models here:
1 model with covariates, no random field
2 model with covariates and unstructured field, accounting for some local overdispersion
\Rightarrow we have a parameter that reflects how close we are to each of the two base models
\Rightarrow priors are chosen depending on how confident we are about this

inference - thoughts

common approach: log-Gaussian Cox process

inference - thoughts

common approach: log-Gaussian Cox process
"we need to talk to scientists" - BUT: even for simple univariate processes we are far from being able to advise them on issues of inference

inference - thoughts

common approach: log-Gaussian Cox process
"we need to talk to scientists" - BUT: even for simple univariate processes we are far from being able to advise them on issues of inference
"we need to think about model interpretation and inference BUT: we have very rarely answered users' scientific questions...

model assessment...

in practice:

model assessment...

in practice:

- model assessment very familiar to end-users:

model assessment...

in practice:

- model assessment very familiar to end-users:
- model comparison and hence finding important covariates often at the core of the scientific question

model assessment...

in practice:

- model assessment very familiar to end-users:
- model comparison and hence finding important covariates often at the core of the scientific question
- model assessment often expected - and of course relevant

model assessment...

in practice:

- model assessment very familiar to end-users:
- model comparison and hence finding important covariates often at the core of the scientific question
- model assessment often expected - and of course relevant
- we have little to offer...

model assessment...

in practice:

- model assessment very familiar to end-users:
- model comparison and hence finding important covariates often at the core of the scientific question
- model assessment often expected - and of course relevant
- we have little to offer...

model assessment...

model assessment...

- rather underdeveloped...
- in particular for complex models

model assessment...

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns

model assessment...

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns
also
- cross validated scores may be used for geo-referenced data

model assessment...

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns
also
- cross validated scores may be used for geo-referenced data
- difficult to use for point process models

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics
\Rightarrow of little use for partly observed pattern....

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics
\Rightarrow of little use for partly observed pattern....
\Rightarrow difficult to use for model comparison....

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics
\Rightarrow of little use for partly observed pattern....
\Rightarrow difficult to use for model comparison....

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics
\Rightarrow of little use for partly observed pattern....
\Rightarrow difficult to use for model comparison....

in addition:

- very little in the literature on model comparison...

model assessment for point processes

standard approach for fully observed point patterns: envelop tests based on summary characteristics
\Rightarrow of little use for partly observed pattern....
\Rightarrow difficult to use for model comparison....

in addition:

- very little in the literature on model comparison...
- very little experience with comparison via standard approaches, i.e. AIC, DIC etc.

model assessment for point processes

Let's do some work

there is a lot to do here...

no longer ignoring the real world

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

- work on real problems...

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

- work on real problems...
- deal with issues and practicalities of real data: observation processes

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models
- talk to other scientists: communication of modelling process very important

no longer ignoring the real world

\Rightarrow less abstraction and simplification, more relevance:

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models
- talk to other scientists: communication of modelling process very important
- listen to other scientists... : methods for model assessment sorely needed

recall those rainforests...

recall those rainforests...

aim

quantification of this

Janine Illian

recall those rainforests...

aim

quantification of this

We can quantify the structure - but we still have very little to show in terms of answering practical questions...

