Point processes- - abstraction and practical relevance

Janine Illian

University of St Andrews, Scotland

November 7, 2018

some background – my interests

spatial statistics, in particular,

spatial and spatio-temporal point process modelling

some background – my interests

spatial statistics, in particular,

spatial and spatio-temporal point process modelling

vision

development of methodology that is

- o practically relevant
- realistically complex and
- accessible

some background – my interests

spatial statistics, in particular,

spatial and spatio-temporal point process modelling

vision

development of methodology that is

- o practically relevant
- realistically complex and
- accessible

perspective: applications in ecology and beyond

spatial point processes

spatial point processes

Х

spatial point processes

spatial point processes

spatial point processes

 \Rightarrow identifying and explaining structures in **point patterns**

spatial point processes

 \Rightarrow identifying and explaining structures in **point patterns** stochastic models: **spatial point processes**

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

- examples:
 - cancer cells
 - plants or animals
 - earthquakes
 - terrorist attacks

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

- examples:
 - cancer cells
 - plants or animals
 - earthquakes
 - terrorist attacks

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

- examples:
 - cancer cells
 - plants or animals
 - earthquakes
 - terrorist attacks

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

- examples:
 - cancer cells
 - plants or animals
 - earthquakes
 - terrorist attacks

models of spatial patterns:

⇒ modelling locations and properties ("marks") of objects, events, individuals in space and time

aim

- examples:
 - cancer cells
 - plants or animals
 - earthquakes
 - terrorist attacks

practical relevance: most natural processes take place in space and time

• increasingly detailed spatially explicit data available

- increasingly detailed spatially explicit data available
- spatial information:
 - spatial structure contains information

- increasingly detailed spatially explicit data available
- spatial information:
 - spatial structure contains information
 - averaging across space
 - $\Rightarrow \text{ information loss}$

- increasingly detailed spatially explicit data available
- spatial information:
 - spatial structure contains information
 - averaging across space
 - $\Rightarrow \mathsf{information} \ \mathsf{loss}$
 - second order structures (co-occurrence) provide additional information

practical relevance: most natural processes take place in space and time

- increasingly detailed spatially explicit data available
- spatial information:
 - spatial structure contains information
 - averaging across space
 - $\Rightarrow \text{information loss}$
 - second order structures (co-occurrence) provide additional information

applications: medicine and health sciences, ecology, environmental sciences, international relations (terrorism studies), geology

Illian and Burslem, 2007 and 2017, Illian et al. 2008, Brown et al. 2011, 2013, 2016

spatial point processes – why are they complex?

point process

point process

stochastic mechanism (random variable) that generates point patterns (realisations)

point pattern observed in observation window W – vector of x- and y-coordinates (if W ⊂ ℝ²)

point process

- point pattern observed in observation window W vector of x- and y-coordinates (if W ⊂ ℝ²)
- realisations have different lengths!

point process

- point pattern observed in observation window W vector of x- and y-coordinates (if W ⊂ ℝ²)
- realisations have different lengths!
- what mathematical object could represent these?

point process

- point pattern observed in observation window W vector of x- and y-coordinates (if W ⊂ ℝ²)
- realisations have different lengths!
- what mathematical object could represent these?
- can be described by assigning a count of points to every subset in W; a **measure**!

point process

- point pattern observed in observation window W vector of x- and y-coordinates (if W ⊂ ℝ²)
- realisations have different lengths!
- what mathematical object could represent these?
- can be described by assigning a count of points to every subset in *W*; a **measure**!
- $\Rightarrow\,$ point process N is a random variable, whose values are measures
- ⇒ a random (counting) measure

mathematically complex and intriguing

• how to translate statistical approaches into this context?

mathematically complex and intriguing

- how to translate statistical approaches into this context?
- \Rightarrow standard statistical methods not readily available

mathematically complex and intriguing

- how to translate statistical approaches into this context?
- \Rightarrow standard statistical methods not readily available
 - in addition: spatial models dependence structures
- \Rightarrow computationally expensive

mathematically complex and intriguing

- how to translate statistical approaches into this context?
- \Rightarrow standard statistical methods not readily available
 - in addition: spatial models dependence structures
- \Rightarrow computationally expensive

as a result...

• mainly discussed in theoretical literature

mathematically complex and intriguing

- how to translate statistical approaches into this context?
- \Rightarrow standard statistical methods not readily available
 - in addition: spatial models dependence structures
- \Rightarrow computationally expensive

as a result...

- mainly discussed in theoretical literature
- simplifying assumptions: e.g. small patterns, in rectangular observation windows, rarely considering marks, every "point" has been seen and detected

mathematically complex and intriguing

- how to translate statistical approaches into this context?
- \Rightarrow standard statistical methods not readily available
 - in addition: spatial models dependence structures
- \Rightarrow computationally expensive

as a result...

- mainly discussed in theoretical literature
- simplifying assumptions: e.g. small patterns, in rectangular observation windows, rarely considering marks, every "point" has been seen and detected
- \Rightarrow models too far removed from reality
- ⇒ rarely used to answer scientific questions

spatial point processes in ecology

in ecology

 strong interest in interactions among individual organisms and environment
in ecology

- strong interest in interactions among individual organisms and environment
- individuals exist and interact in space and time

in ecology

- strong interest in interactions among individual organisms and environment
- individuals exist and interact in space and time
- \Rightarrow data: spatial (spatio-temporal) point patterns

in ecology

- strong interest in interactions among individual organisms and environment
- individuals exist and interact in space and time
- \Rightarrow data: spatial (spatio-temporal) point patterns
- ⇒ spatial point process methodology should be highly relevant!

however...

- few ecologists aware of spatial point process methodology
- \Rightarrow not part of the standard statistical toolbox

WHY?

WHY? In the end it's just a bunch of dots, isn't it?

aim

- relevant and
- usable spatial point process methodology

aim

- relevant and
- usable spatial point process methodology

approach: exploiting computational efficiency to construct realistically complex models – using INLA

- much, much faster
- implemented in R-INLA
- suitable for a specific (but very large!) class of models

- much, much faster
- implemented in R-INLA

 \bullet suitable for a specific (but very large!) class of models based on

- Gaussian Markov random fields
- Latent Gaussian models
- Laplace approximations

- much, much faster
- implemented in R-INLA

 \bullet suitable for a specific (but very large!) class of models based on

- Gaussian Markov random fields
- Latent Gaussian models
- Laplace approximations
- \Rightarrow very nice tool for Bayesian inference

- much, much faster
- implemented in R-INLA
- ${\ensuremath{\, \bullet \,}}$ suitable for a specific (but very large!) class of models based on
 - Gaussian Markov random fields
 - Latent Gaussian models
 - Laplace approximations
- \Rightarrow very nice tool for Bayesian inference
- \Rightarrow computationally efficient model fitting, wide range of models
 - quick
 - accurate

INLA to the rescue...

for spatial point processes

• flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s) = \exp(Z(s))$, Z Gaussian random field)

- flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s) = \exp(Z(s))$, Z Gaussian random field)
- Gaussian random field: approximate flexibly as solution to stochastic partial differential equation (SPDE)

for spatial point processes

- flexible and computationally efficient methodology for log-Gaussian Cox processes (intensity field, $\Lambda(s) = \exp(Z(s))$, Z Gaussian random field)
- Gaussian random field: approximate flexibly as solution to stochastic partial differential equation (SPDE)

in essence:

 \Rightarrow computational efficiency and flexibility makes it realistic to fit complex models

spatial point processes

• mathematically complex objects (yeah!)

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)
- \Rightarrow we can (even have to!) simplify... a lot... (yeah!)

- mathematically complex objects (yeah!)
- model fitting computationally complex (yeah!)
- \Rightarrow we can (even have to!) simplify... a lot... (yeah!)

this makes live easy ...

• we can define our own problems

- we can define our own problems
- we can produce our own "data"

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

this makes live easy ...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

• it's enough to show that we can fit some models to some data

this makes live easy ...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

- it's enough to show that we can fit some models to some data
- we can simply assume what our pattern "lives" in a square or rectangle

this makes live easy ...

- we can define our own problems
- we can produce our own "data"
- we don't need to think about the problems of other scientists
- we don't need to talk to other scientists
- we don't need to listen to other scientists...

Specifically:

- it's enough to show that we can fit some models to some data
- we can simply assume what our pattern "lives" in a square or rectangle

most crucially: we don't need to think about practical issuesdata collection

most crucially: we don't need to think about practical issues

- data collection
- model interpretation

most crucially: we don't need to think about practical issues

- data collection
- model interpretation
- model assessment

background the reality

Meanwhile, in the real world...

Meanwhile, in the real world...

...people are developing fancy data collection methods...

Meanwhile, in the real world...

...people are developing fancy data collection methods...

 \Rightarrow many of these provide spatially explicit data...

Meanwhile, in the real world...

...people are developing fancy data collection methods...

- \Rightarrow many of these provide spatially explicit data...
- For example:
 - video surveys
...people are developing fancy data collection methods... \Rightarrow many of these provide spatially explicit data... For example:

- video surveys
- drone surveys

...people are developing fancy data collection methods... \Rightarrow many of these provide spatially explicit data... For example:

- video surveys
- drone surveys
- telemetry data...

...people are developing fancy data collection methods... \Rightarrow many of these provide spatially explicit data...

For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...

...people are developing fancy data collection methods... ⇒ many of these provide spatially explicit data... For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...
- \Rightarrow we can collect data on (large) animals (\neq waterstriders)

...people are developing fancy data collection methods...

 \Rightarrow many of these provide spatially explicit data...

For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...

 \Rightarrow we can collect data on (large) animals (\neq waterstriders)

...people are developing fancy data collection methods...

 \Rightarrow many of these provide spatially explicit data...

For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...

 \Rightarrow we can collect data on (large) animals (\neq waterstriders)

 \Rightarrow data set life in big and complex observation areas

...people are developing fancy data collection methods...

 \Rightarrow many of these provide spatially explicit data...

For example:

- video surveys
- drone surveys
- telemetry data...
- "citizen" science data...

 \Rightarrow we can collect data on (large) animals (\neq waterstriders)

- \Rightarrow data set life in big and complex observation areas
- \Rightarrow data have a complex observation process

background the reality

by contrast...

What I did 15 years ago:

and so we move on...

What we are discussing 15 years later:

background the reality

Meanwhile, in the real world...

 $\dots people \ are \ developing \ computationally \ efficient \ methodology \dots$

 \Rightarrow we can now fit more (realistically) complex models...

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much
 - we can now model efficiently and more flexibly

...people are developing computationally efficient methodology...

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much
 - we can now model efficiently and more flexibly

e.g. using log Gaussian Cox processes and INLA+SPDE we can

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much
 - we can now model efficiently and more flexibly
- e.g. using log Gaussian Cox processes and INLA+SPDE we can
 - flexibly jointly model marks and (spatial) covariates along with spatial pattern

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much
 - we can now model efficiently and more flexibly
- e.g. using log Gaussian Cox processes and INLA+SPDE we can
 - flexibly jointly model marks and (spatial) covariates along with spatial pattern
 - point pattern reflects observation process/ take it into account

- \Rightarrow we can now fit more (realistically) complex models...
 - we don't need to simplify as much
 - we can now model efficiently and more flexibly
- e.g. using log Gaussian Cox processes and INLA+SPDE we can
 - flexibly jointly model marks and (spatial) covariates along with spatial pattern
 - point pattern reflects observation process/ take it into account
 - model on complex domains
 - $\bullet \ \ {\rm the \ sphere} = {\rm the \ earth}$
 - observation areas with barriers (islands, archipelagos...)

• we can now model more flexibly

Flexible...

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now model more flexibly
- we now potentially have access to more complex data

• we can now work with real data...

- we can now model more flexibly
- we now potentially have access to more complex data

• we can now work with real data... shudder....

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about data collection issues

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....
- we might have to think about model interpretation and inference

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....
- we might have to think about **model interpretation and inference** shudder....

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....
- we might have to think about **model interpretation and inference** shudder....
- we might have to think about **model assessment** for complex models...

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....
- we might have to think about **model interpretation and inference** shudder....
- we might have to think about **model assessment** for complex models... shudder....

- we can now model more flexibly
- we now potentially have access to more complex data

- we can now work with real data... shudder....
- we might have to think about **data collection** issues shudder....
- we might have to think about **model interpretation and inference** shudder....
- we might have to think about **model assessment** for complex models... shudder....
- we need to speak to other scientists...

Examples...

aim

• data collections issues - distance sampling

Examples...

aim

- data collections issues distance sampling
- model interpretation back to the rainforests

Examples...

aim

- data collections issues distance sampling
- model interpretation back to the rainforests
- model assessment discussion

In practice, especially in animal studies, observation area of interest is often too big to sample entirely. *thinned* point process

detection probability p < 1

Area of interest is too big to sample entirely.

detection probability p < 1

Area of interest is too big to sample entirely.

detection probability p < 1
Area of interest is too big to sample entirely.

detection probability p < 1

Area of interest is too big to sample entirely.

detection probability p < 1

distance sampling data

distance sampling data

thinned point process!

example...

- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers (> twice the size of Europe!) was surveyed (transects)
- blue whale sightings

example...

- large scale line-transect cetacean survey in the eastern tropical Pacific Ocean (ETP) between 1986 and 2007
- area of 21.353 million square kilometers (> twice the size of Europe!) was surveyed (transects)
- blue whale sightings

linear predictor depends on:

- detection function
- (SPDE-based) model for animal intensity
- integration scheme accounts for observation process

Yuan et al. 2016, Bachl et al. in preparation

distance sampling... nice...

• spatio-temporal point process model

distance sampling... nice...

- spatio-temporal point process model
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates

distance sampling... nice...

- spatio-temporal point process model
- models the effect of covariates continuously in space
- models spatial structure that cannot be explained by covariates
- elegant, integrated approach
- other data collection approaches may be seeing as operations on underlying point process
- implemented in *inlabru* (https://sites.google.com/inlabru.org/inlabru)

inference

the rainforests...

inference

the rainforests...

inference

the rainforests...

habitat association modelling:

• interest in understanding the mechanisms that allow different species to coexist

the rainforests...

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems

the rainforests...

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems
- model the pattern formed by individuals in space relative to local conditions – soil covariates

the rainforests...

- interest in understanding the mechanisms that allow different species to coexist
- especially in species-rich systems
- model the pattern formed by individuals in space relative to local conditions – soil covariates
- common approach: log-Gaussian Cox process

background the reality

Model interpretation... and more

random intensity: $\Lambda(s) = \exp\{\eta(s)\}$, where $\{\eta(s) : s \in \mathbb{R}^2\}$ is a latent Gaussian random field (GRF)

random intensity: $\Lambda(s) = \exp\{\eta(s)\}$, where $\{\eta(s) : s \in \mathbb{R}^2\}$ is a latent Gaussian random field (GRF) can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + u(s) + v(s), \quad s \in \Omega;$$
(1)

 Ω two-dimensional study region;

random intensity: $\Lambda(s) = \exp\{\eta(s)\}$, where $\{\eta(s) : s \in \mathbb{R}^2\}$ is a latent Gaussian random field (GRF) can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + u(s) + v(s), \quad s \in \Omega;$$
(1)

 Ω two-dimensional study region;

 β_0 intercept, $\{\beta_j\}_{j=1}^{n_\beta}$ linear effects of covariates $\{z_j(s), s \in \Omega\}_{j=1}^{n_\beta}$

random intensity: $\Lambda(s) = \exp\{\eta(s)\}$, where $\{\eta(s) : s \in \mathbb{R}^2\}$ is a latent Gaussian random field (GRF) can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + u(s) + v(s), \quad s \in \Omega;$$
(1)

 Ω two-dimensional study region;

 β_0 intercept, $\{\beta_j\}_{j=1}^{n_\beta}$ linear effects of covariates $\{z_j(s), s \in \Omega\}_{j=1}^{n_\beta}$ spatial effects:

spatially-correlated random field $u = \{u(s), s \in \Omega\}$: accounting for spatial autocorrelation

random intensity: $\Lambda(s) = \exp\{\eta(s)\}$, where $\{\eta(s) : s \in \mathbb{R}^2\}$ is a latent Gaussian random field (GRF) can express the log-intensity $\eta(s)$ in a spatial grid cell s as

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + u(s) + v(s), \quad s \in \Omega;$$
(1)

 Ω two-dimensional study region;

 β_0 intercept, $\{\beta_j\}_{j=1}^{n_\beta}$ linear effects of covariates $\{z_j(s), s \in \Omega\}_{j=1}^{n_\beta}$ spatial effects:

spatially-correlated random field $\pmb{u}=\{u(s),\,s\in\Omega\}:$ accounting for spatial autocorrelation

spatially-unstructured random field $v = \{v(s), s \in \Omega\}$: error field accounting for over-dispersion or clustering within grid cells

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
- ⇒ we need the spatial fields to avoid spuriously significant covariates!

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
- ⇒ we need the spatial fields to avoid spuriously significant covariates!
- BUT on the other hand

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
- ⇒ we need the spatial fields to avoid spuriously significant covariates!

BUT – on the other hand

• properties of the spatial field determine the smoothness of the spatial field

- model assumption: locations of individuals are independent given the linear predictor
- covariates might not be enough to capture spatial structure assumption is violated
- credible intervals for β parameters get too small!
- ⇒ we need the spatial fields to avoid spuriously significant covariates!

BUT – on the other hand

- properties of the spatial field determine the smoothness of the spatial field
- o choose well to avoid under- or overfitting!

• priors have to be chosen

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field
- \Rightarrow prior choice impacts on inference and interpretation overfitting versus not accounting for autocorrelation

- priors have to be chosen
- priors in spatial field determine the smoothness of the spatial field
- \Rightarrow prior choice impacts on inference and interpretation overfitting versus not accounting for autocorrelation

assign (typically Gamma) priors to the precision (inverse variance) parameters of the two random fields

issues:

- $1 \ u(s)$ and v(s) are not independent
- 2 prior choice is difficult as the priors cannot be easily communicated or understood
- 3 new priors have to be chosen if grid resolution changes

issues:

- $1 \ u(s)$ and v(s) are not independent
- 2 prior choice is difficult as the priors cannot be easily communicated – or understood
- 3 new priors have to be chosen if grid resolution changes

approach:

1 consider $u(\boldsymbol{s})$ and $v(\boldsymbol{s})$ as a unit and control relative importance of them

issues:

- $1 \ u(s)$ and v(s) are not independent
- 2 prior choice is difficult as the priors cannot be easily communicated – or understood
- 3 new priors have to be chosen if grid resolution changes

approach:

- 1 consider u(s) and v(s) as a unit and control relative importance of them
- 2 make prior choice transparent and problem-driven

issues:

- $1 \ u(s)$ and v(s) are not independent
- 2 prior choice is difficult as the priors cannot be easily communicated – or understood
- 3 new priors have to be chosen if grid resolution changes

approach:

- 1 consider u(s) and v(s) as a unit and control relative importance of them
- 2 make prior choice transparent and problem-driven
- 3 scale spatially structured effect in terms of generalised variance

Sørbye et al. 2016, Sørbye et al. 2018

solutions...

make prior choice transparent and problem-driven first step:

solutions...

make prior choice transparent and problem-driven first step:

Choose a slightly different model:
solutions...

make prior choice transparent and problem-driven first step:

Choose a slightly different model:

instead of

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + \frac{u(s)}{v(s)}, \quad s \in \Omega,$$

solutions...

make prior choice transparent and problem-driven first step:

Choose a slightly different model:

instead of

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + \frac{u(s)}{v(s)}, \quad s \in \Omega,$$

now consider

$$\begin{split} \eta(s) &= \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + \frac{1}{\sqrt{\tau}} \left(\sqrt{\phi} u^*(s) + \sqrt{1 - \phi} v(s) \right), \quad \phi \in (0, 1). \\ u^* &= \{ u^*(s), \, s \in \Omega \}: \text{ scaled spatial random field} \end{split}$$

solutions...

make prior choice transparent and problem-driven first step:

Choose a slightly different model:

instead of

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + \frac{u(s)}{v(s)}, \quad s \in \Omega,$$

now consider

$$\eta(s) = \beta_0 + \sum_{j=1}^{n_\beta} \beta_j z_j(s) + \frac{1}{\sqrt{\tau}} \left(\sqrt{\phi} u^*(s) + \sqrt{1 - \phi} v(s) \right), \quad \phi \in (0, 1).$$

 $u^* = \{u^*(s), s \in \Omega\}$: scaled spatial random field hyperparameters τ and ϕ : assign penalised complexity (PC) priors

Simpson et al., 2017

background the reality

make prior choice transparent and problem-driven

second step:

second step: re-think priors:

second step: re-think priors:

recall: priors determine the smoothness of the random field

second step: re-think priors:

recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting

second step: re-think priors:

recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting

approaches:

 play around – choose some arbitrary prior value and change it and check what happens until you are happy

second step: re-think priors:

recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting

approaches:

- play around choose some arbitrary prior value and change it and check what happens until you are happy
- automize choose a criterion (e.g. "degree of wigglyness") and penalise violation of that criterion

second step: re-think priors:

recall: priors determine the smoothness of the random field

- if the field is too smooth, spurious significance
- if the field is to wiggly, overfitting

approaches:

- play around choose some arbitrary prior value and change it and check what happens until you are happy
- automize choose a criterion (e.g. "degree of wigglyness") and penalise violation of that criterion
- \Rightarrow we don't know what the ideal smoothness/wigglyness is... here: penalise something different – deviation from a base model

penalise deviation from a base model...

Sequence of two base models here:

 $1 \hspace{0.1 cm} \text{model} \hspace{0.1 cm} \text{with covariates, no random field}$

penalise deviation from a base model...

Sequence of two base models here:

- $1 \hspace{0.1 cm} \text{model} \hspace{0.1 cm} \text{with covariates, no random field}$
- 2 model with covariates and unstructured field, accounting for some local overdispersion

penalise deviation from a base model...

Sequence of two base models here:

- $1 \hspace{0.1 cm} \text{model} \hspace{0.1 cm} \text{with covariates, no random field}$
- 2 model with covariates and unstructured field, accounting for some local overdispersion

 \Rightarrow we have a parameter that reflects how close we are to each of the two base models

penalise deviation from a base model...

Sequence of two base models here:

- $1 \hspace{0.1 cm} \text{model} \hspace{0.1 cm} \text{with covariates, no random field}$
- 2 model with covariates and unstructured field, accounting for some local overdispersion

 \Rightarrow we have a parameter that reflects how close we are to each of the two base models

 \Rightarrow priors are chosen depending on how confident we are about this

inference – thoughts

common approach: log-Gaussian Cox process

inference – thoughts

common approach: log-Gaussian Cox process

"we need to talk to scientists" – BUT : even for simple univariate processes we are far from being able to advise them on issues of inference

inference – thoughts

common approach: log-Gaussian Cox process

"we need to talk to scientists" – BUT : even for simple univariate processes we are far from being able to advise them on issues of inference

"we need to think about **model interpretation and inference** – BUT: we have very rarely answered users' scientific questions...

background the reality

model assessment...

in practice:

• model assessment very familiar to end-users:

- model assessment very familiar to end-users:
 - model comparison and hence finding important covariates often at the core of the scientific question

- model assessment very familiar to end-users:
 - model comparison and hence finding important covariates often at the core of the scientific question
 - model assessment often expected and of course relevant

- model assessment very familiar to end-users:
 - model comparison and hence finding important covariates often at the core of the scientific question
 - model assessment often expected and of course relevant
- we have little to offer...

- model assessment very familiar to end-users:
 - model comparison and hence finding important covariates often at the core of the scientific question
 - model assessment often expected and of course relevant
- we have little to offer...

background the reality

model assessment...

- rather underdeveloped...
- in particular for complex models

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns

also

• cross validated scores may be used for geo-referenced data

- rather underdeveloped...
- in particular for complex models
- mainly for simple models, i.e. fully observed patterns

also

- cross validated scores may be used for geo-referenced data
- difficult to use for point process models

standard approach for fully observed point patterns: envelop tests based on summary characteristics

standard approach for fully observed point patterns: envelop tests based on summary characteristics

 \Rightarrow of little use for partly observed pattern....

standard approach for fully observed point patterns: envelop tests based on summary characteristics

- \Rightarrow of little use for partly observed pattern....
- \Rightarrow difficult to use for model comparison....

standard approach for fully observed point patterns: envelop tests based on summary characteristics

- \Rightarrow of little use for partly observed pattern....
- \Rightarrow difficult to use for model comparison....

standard approach for fully observed point patterns: envelop tests based on summary characteristics

- \Rightarrow of little use for partly observed pattern....
- \Rightarrow difficult to use for model comparison....

in addition:

• very little in the literature on model comparison...

standard approach for fully observed point patterns: envelop tests based on summary characteristics

- \Rightarrow of little use for partly observed pattern....
- \Rightarrow difficult to use for model comparison....

in addition:

- very little in the literature on model comparison...
- very little experience with comparison via standard approaches, i.e. AIC, DIC etc.

background the reality

model assessment for point processes

Let's do some work

there is a lot to do here ...

background the reality

no longer ignoring the real world
- \Rightarrow less abstraction and simplification, more relevance:
 - work on real problems...

- work on real problems...
- deal with issues and practicalities of real data: **observation processes**

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models
- talk to other scientists: communication of modelling process very important

- work on real problems...
- deal with issues and practicalities of real data: observation processes
- think about the problems of other scientists: realistic models
- talk to other scientists: communication of modelling process very important
- listen to other scientists... : methods for model assessment sorely needed

recall those rainforests...

recall those rainforests...

aim

quantification of this

recall those rainforests...

aim

quantification of this

We can quantify the structure – but we still have very little to show in terms of answering practical questions...