ON SIMULATIONS OF SPDE-BASED STATIONARY RANDOM FIELDS

R. Carrizo Vergara, N. Desassis , D. Allard

Workshop INLA-SPDE

Avignon, France 8th November 2018

Section 1

INTRODUCTION

33 R. Carrizo Vergara, N. Desassis, D. Allard Simulations of SPDE-based stationary Random Fields 08/11/2018 2 / 48

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical method:

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical method:

• Finite Difference Method.

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical method:

- Finite Difference Method.
- Finite Element Method.

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical method:

- Finite Difference Method.
- Finite Element Method.
- Spectral Method (in the PDE sense).

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical method:

- Finite Difference Method.
- Finite Element Method.
- Spectral Method (in the PDE sense).

ISSUE:

These methods are often conceived under the context of a particular operator. They cannot simply be applied under more general SPDEs without suitable adaptations. In this presentation we study an already existent method for simulating stationary random fields.

- [Pardo-Iguzquiza and Chica-Olmo, 1993]: conception in a geostatistical context with applications.
- [Lang & Potthoff, 2011]: conception in a SPDE context.

In this presentation we study an already existent method for simulating stationary random fields.

- [Pardo-Iguzquiza and Chica-Olmo, 1993]: conception in a geostatistical context with applications.
- [Lang & Potthoff, 2011]: conception in a SPDE context.

Advantages

This method is *quite general*, and it will allow us to obtain simulations for models beyond the Matérn model and being related to SPDEs involving a wide-class of pseudo-differential operators.

In this presentation we study an already existent method for simulating stationary random fields.

- [Pardo-Iguzquiza and Chica-Olmo, 1993]: conception in a geostatistical context with applications.
- [Lang & Potthoff, 2011]: conception in a SPDE context.

Advantages

This method is *quite general*, and it will allow us to obtain simulations for models beyond the Matérn model and being related to SPDEs involving a wide-class of pseudo-differential operators.

This method can be catalogued as a *spectral method* in both PDE and geostatistical senses.

Section 2

THEORETICAL PRINCIPLES

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that • $V_j^N \cap V_k^N = \emptyset$, for all $j, k \in \{1, ..., N\}$ such that $j \neq k$, for all $N \in \mathbb{N}_*$

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that • $V_j^N \cap V_k^N = \emptyset$, for all $j, k \in \{1, ..., N\}$ such that $j \neq k$, for all $N \in \mathbb{N}_*$ • $\ell_N := \max_{j \in \{1,...,N\}} \operatorname{diam}(V_j^N) \to 0$ as $N \to \infty$

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that

• $V_j^N \cap V_k^N = \emptyset$, for all $j,k \in \{1,...,N\}$ such that j
eq k, for all $N \in \mathbb{N}_*$

•
$$\ell_N := \max_{j \in \{1, \dots, N\}} \operatorname{diam}(V_j^N) \to 0$$
 as $N \to \infty$

• for all $K \subset \mathbb{R}^d$ compact, there exists $N_0 \in \mathbb{N}$ such that for all $N \ge N_0$, $K \subset \bigcup_{j=1}^N V_j^N$

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that • $V_i^N \cap V_k^N = \emptyset$, for all $j, k \in \{1, ..., N\}$ such that $j \neq k$, for all $N \in \mathbb{N}_*$

•
$$\ell_N := \max_{j \in \{1, \dots, N\}} \operatorname{diam}(V_j^N) \to 0 \text{ as } N \to \infty$$

• for all $K \subset \mathbb{R}^d$ compact, there exists $N_0 \in \mathbb{N}$ such that for all $N \ge N_0$, $K \subset \bigcup_{j=1}^N V_j^N$

We consider in addition a collection of *tag-points*: $(\xi_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*} \subset \mathbb{R}^d$, such that $\xi_j^N \in V_j^N$, for all $j \in \{1,...,N\}, N \in \mathbb{N}_*$.

We consider a Riemann sequence of partitions growing to \mathbb{R}^d : $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$, a collection of bounded Borel sets of \mathbb{R}^d such that

•
$$V_j^N \cap V_k^N = \emptyset$$
, for all $j, k \in \{1, ..., N\}$ such that $j \neq k$, for all $N \in \mathbb{N}_*$

•
$$\ell_N := \max_{j \in \{1,...,N\}} \operatorname{diam}(V_j^N) \to 0 \text{ as } N \to \infty$$

• for all $K \subset \mathbb{R}^d$ compact, there exists $N_0 \in \mathbb{N}$ such that for all $N \ge N_0$, $K \subset \bigcup_{j=1}^N V_j^N$

We consider in addition a collection of *tag-points*: $(\xi_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*} \subset \mathbb{R}^d$, such that $\xi_j^N \in V_j^N$, for all $j \in \{1,...,N\}, N \in \mathbb{N}_*$.

INSPIRATION

If μ is a locally finite measure over $\mathbb{R}^d,$ it can be approximated by

$$\mu_N = \sum_{j=1}^N \mu(V_j^N) \delta_{\xi_j^N} \tag{1}$$

If Z is a real stationary Random Field over \mathbb{R}^d , then $M_Z = \mathscr{F}(Z)$ is an Hermitian slow-growing orthogonal Random Measure.

If Z is a real stationary Random Field over \mathbb{R}^d , then $M_Z = \mathscr{F}(Z)$ is an Hermitian slow-growing orthogonal Random Measure.

Approximating the orthogonal Random Measure

$$M_{Z_N} := \sum_{j=1}^N M_Z(V_j^N) \delta_{\xi_j^N}$$
(2)

If Z is a real stationary Random Field over \mathbb{R}^d , then $M_Z = \mathscr{F}(Z)$ is an Hermitian slow-growing orthogonal Random Measure.

Approximating the orthogonal Random Measure

$$M_{Z_N} := \sum_{j=1}^N M_Z(V_j^N) \delta_{\xi_j^N}$$
(2)

APPROXIMATING THE FIELD

$$Z_N(x) := \mathscr{F}^{-1}\left(\sum_{j=1}^N M_Z(V_j^N) \delta_{\xi_j^N}\right)(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \sum_{j=1}^N M_Z(V_j^N) e^{ix^T \xi_j^N}$$
(3)

If Z is a real stationary Random Field over \mathbb{R}^d , then $M_Z = \mathscr{F}(Z)$ is an Hermitian slow-growing orthogonal Random Measure.

Approximating the orthogonal Random Measure

$$M_{Z_N} := \sum_{j=1}^N M_Z(V_j^N) \delta_{\xi_j^N}$$
⁽²⁾

APPROXIMATING THE FIELD

$$Z_{N}(x) := \mathscr{F}^{-1}\left(\sum_{j=1}^{N} M_{Z}(V_{j}^{N})\delta_{\xi_{j}^{N}}\right)(x) = \frac{1}{(2\pi)^{\frac{d}{2}}}\sum_{j=1}^{N} M_{Z}(V_{j}^{N})e^{ix^{T}\xi_{j}^{N}}$$
(3)

The random variables $M_Z(V_j^N)$ are non-correlated complex random variables, with variance

$$\mathbb{V}ar(M_Z(V_j^N)) = (2\pi)^{\frac{d}{2}} \mu_Z(V_j^N), \tag{4}$$

where μ_Z is the spectral measure of Z.

 $(Z_N(x))_{x\in\mathbb{R}^d}$ is a (complex) stationary Random Function with spectral measure and covariance

$$\mu_{Z_N} = \sum_{j=1}^{N} \mu_Z(V_j^N) \delta_{\xi_j^N} \quad ; \quad \rho_{Z_N}(h) = \frac{1}{(2\pi)^{\frac{d}{2}}} \sum_{j=1}^{N} \mu_Z(V_j^N) e^{ih^T \xi_j^N}.$$
(5)

Result

If Z is a real and (mean-square) continuous stationary Random Function over \mathbb{R}^d , then

$$\sup_{x \in \mathcal{K}} \mathbb{E}\left(|Z(x) - Z_N(x)|^2 \right) \to 0, \quad \text{as } N \to \infty, \forall \mathcal{K} \subset \mathbb{R}^d \text{ compact.}$$
(6)

 $(Z_N(x))_{x\in\mathbb{R}^d}$ is a (complex) stationary Random Function with spectral measure and covariance

$$\mu_{Z_N} = \sum_{j=1}^{N} \mu_Z(V_j^N) \delta_{\xi_j^N} \quad ; \quad \rho_{Z_N}(h) = \frac{1}{(2\pi)^{\frac{d}{2}}} \sum_{j=1}^{N} \mu_Z(V_j^N) e^{ih^T \xi_j^N}.$$
(5)

RESULT

If Z is a real and (mean-square) continuous stationary Random Function over \mathbb{R}^d , then

$$\sup_{x \in \mathcal{K}} \mathbb{E}\left(|Z(x) - Z_N(x)|^2 \right) \to 0, \quad \text{as } N \to \infty, \forall \mathcal{K} \subset \mathbb{R}^d \text{ compact.}$$
(6)

VANISHING BOUND

$$\sup_{x \in \mathcal{K}} \mathbb{E}\left(\left|Z(x) - Z_{\mathcal{N}}(x)\right|^{2}\right) \leq \frac{1}{(2\pi)^{\frac{d}{2}}} \left[4\ell_{\mathcal{N}}^{2}\mu_{Z}(\mathbb{R}^{d})\sup_{x \in \mathcal{K}}|x|^{2} + \mu_{Z}\left(\mathbb{R}^{d} \setminus \bigcup_{j=1}^{\mathcal{N}} V_{j}^{\mathcal{N}}\right)\right]_{(T)}$$

SIMULATIONS OF SPDE-BASED STATIONARY RANDOM FIELDS

08/11/2018

REMARK: GENERALIZED VERSION

If Z is a real stationary Generalized Random Field over \mathbb{R}^d (slow-growing spectral measure, not necessarily finite), then

$$\mathbb{E}\left(\left|\langle Z,\varphi\rangle-\langle Z_{N},\varphi\rangle\right|^{2}\right)\to0,\quad\text{as }N\to\infty,\forall\varphi\in\mathscr{S}(\mathbb{R}^{d})$$
(8)

APPLICATION TO SPDES

Consider a SPDE over \mathbb{R}^d of the form

$$\mathcal{L}_g U = X, \tag{9}$$

where X is a real stationary Random Field over \mathbb{R}^d and $\mathcal{L}_g = \mathscr{F}^{-1}(g\mathscr{F}(\cdot))$, with $g : \mathbb{R}^d \to \mathbb{C}$ an Hermitian ($\overline{g(\xi)} = g(-\xi)$) continuous polynomially bounded function (symbol function).

Application to SPDEs

Consider a SPDE over \mathbb{R}^d of the form

$$\mathcal{L}_g U = X, \tag{9}$$

where X is a real stationary Random Field over \mathbb{R}^d and $\mathcal{L}_g = \mathscr{F}^{-1}(g\mathscr{F}(\cdot))$, with $g : \mathbb{R}^d \to \mathbb{C}$ an Hermitian ($\overline{g(\xi)} = g(-\xi)$) continuous polynomially bounded function (symbol function).

FACT [CARRIZO VERGARA ET AL., 2018]

If g is inferiorly bounded by the inverse of a strictly positive polynomial, there exists a unique stationary solution given by

$$U = \mathcal{L}_{\frac{1}{g}} X \tag{10}$$

Application to SPDEs

Consider a SPDE over \mathbb{R}^d of the form

$$\mathcal{L}_g U = X, \tag{9}$$

where X is a real stationary Random Field over \mathbb{R}^d and $\mathcal{L}_g = \mathscr{F}^{-1}(g\mathscr{F}(\cdot))$, with $g : \mathbb{R}^d \to \mathbb{C}$ an Hermitian ($\overline{g(\xi)} = g(-\xi)$) continuous polynomially bounded function (symbol function).

Fact [Carrizo Vergara et al., 2018]

If g is inferiorly bounded by the inverse of a strictly positive polynomial, there exists a unique stationary solution given by

$$U = \mathcal{L}_{\frac{1}{g}} X \tag{10}$$

08/11/2018

10 / 48

IDEA [LANG & POTTHOFF, 2011]

Replace X with its approximation X_N and then,

$$U_{N}(x) = \mathcal{L}_{\frac{1}{g}} X_{N}(x) = \mathscr{F}^{-1} \left(\frac{1}{g} \sum_{j=1}^{N} M_{X}(V_{j}^{N}) \delta_{\xi_{j}^{N}} \right)(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \sum_{j=1}^{N} \frac{M_{X}(V_{j}^{N})}{g(\xi_{j}^{N})} e^{ix^{T} \xi_{j}^{N}}$$

SIMULATIONS OF SPDE-BASED STATIONARY RANDOM FIELDS

RESULT (GENERALIZED VERSION)

$$\mathbb{E}\left(\left|\langle U,\varphi\rangle-\langle U_N,\varphi\rangle\right|^2\right)\to 0, \quad \text{as } N\to\infty, \forall\varphi\in\mathscr{S}(\mathbb{R}^d) \tag{12}$$

(NOT PRECISE) RESULT

If $|g|^{-2}$ is integrable with respect to μ_X , U is a continuous stationary Random Function. Under suitable conditions on g and/or X,

$$\sup_{x \in \mathcal{K}} \mathbb{E}\left(\left| U(x) - U_{\mathcal{N}}(x) \right|^2 \right) \to 0, \quad \text{as } \mathcal{N} \to \infty, \forall \mathcal{K} \subset \mathbb{R}^d \text{ compact.}$$
(13)

Section 3

IMPLEMENTATION AND ILLUSTRATIONS

• The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.

- The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.
- The Random Function U_N is complex. If a real approximation is desired, the sequence of partitions $(V_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$ and the tag points $(\xi_j^N)_{j \in \{1,...,N\}, N \in \mathbb{N}_*}$ must be selected such that $M_{U_N} = \mathscr{F}(U_N)$ is Hermitian.

- The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.
- The Random Function U_N is complex. If a real approximation is desired, the sequence of partitions (V_j^N)_{j∈{1,...,N},N∈ℕ_{*}} and the tag points (ξ_j^N)_{j∈{1,...,N},N∈ℕ_{*}} must be selected such that M_{U_N} = 𝔅(U_N) is Hermitian.
- The Random Function U_N is smooth in mean-square. Regular models will be better approximated.

- The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.
- The Random Function U_N is complex. If a real approximation is desired, the sequence of partitions (V_j^N)_{j∈{1,...,N},N∈ℕ_{*}} and the tag points (ξ_i^N)_{j∈{1,...,N},N∈ℕ_{*}} must be selected such that M_{U_N} = 𝔅(U_N) is Hermitian.
- The Random Function U_N is smooth in mean-square. Regular models will be better approximated.
- The complex random variables $M_X(V_j^N)$ are non-correlated, but not necessarily independent. For instance, $M_X(V_i^N) = \overline{M_X}(-V_i^N)$.

- The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.
- The Random Function U_N is complex. If a real approximation is desired, the sequence of partitions (V_j^N)_{j∈{1,...,N},N∈ℕ_{*}} and the tag points (ξ_i^N)_{i∈{1,...,N},N∈ℕ_{*}} must be selected such that M_{U_N} = ℱ(U_N) is Hermitian.
- The Random Function U_N is smooth in mean-square. Regular models will be better approximated.
- The complex random variables M_X(V^N_j) are non-correlated, but not necessarily independent. For instance, M_X(V^N_i) = M_X(-V^N_i).
- The simulation of U_N can be computed for arbitrary tag points and over any arbitrary point x in the space. If the number of evaluation points is $M \in \mathbb{N}_*$, the algorithm has a complexity $\mathcal{O}(MN)$.
IMPLEMENTATION DETAILS

- The Random Function U_N is periodic \rightarrow restrict the evaluation to a domain.
- The Random Function U_N is complex. If a real approximation is desired, the sequence of partitions (V^N_j)_{j∈{1,...,N},N∈ℕ_{*}} and the tag points (ξ^N_i)_{i∈{1,...,N},N∈ℕ_{*}} must be selected such that M_{U_N} = ℱ(U_N) is Hermitian.
- The Random Function U_N is smooth in mean-square. Regular models will be better approximated.
- The complex random variables M_X(V^N_j) are non-correlated, but not necessarily independent. For instance, M_X(V^N_i) = M_X(-V^N_i).
- The simulation of U_N can be computed for arbitrary tag points and over any arbitrary point x in the space. If the number of evaluation points is $M \in \mathbb{N}_*$, the algorithm has a complexity $\mathcal{O}(MN)$.
- In order to apply fast computation algorithms as the FFT, we need both the tag points and the evaluation points to be set in convenient regular grids. In such a case the complexity is $\mathcal{O}(\log(M)N)$.

Specifications

- All the spatial simulations are set over $[0, 100] \times [0, 100]$.
- The approximation order is $N = 2^{12}$ in every axe.
- The spatial regular grid, which depends on N, is of 567 \times 567 points.

$$(\kappa^2 - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^2 + |\xi|^2)^{\frac{\alpha}{2}}$ (14)

 $\alpha = 4$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^{2} - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^{2} + |\xi|^{2})^{\frac{\alpha}{2}}$ (15)

 $\alpha = 3.67$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^2 - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^2 + |\xi|^2)^{\frac{\alpha}{2}}$ (16)

 $\alpha = 3.33$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^{2} - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^{2} + |\xi|^{2})^{\frac{\alpha}{2}}$ (17)

 $\alpha = 3$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^2 - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^2 + |\xi|^2)^{\frac{\alpha}{2}}$ (18)

 $\alpha = 2.67$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^{2} - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^{2} + |\xi|^{2})^{\frac{\alpha}{2}}$ (19)

 $\alpha = 2.33$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^2 - \Delta)^{rac{lpha}{2}} U = W \;\;\;;\;\;\; g(\xi) = (\kappa^2 + |\xi|^2)^{rac{lpha}{2}}$$

(20)

 $\alpha = 2$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^{2} - \Delta)^{\frac{\alpha}{2}} U = W$$
; $g(\xi) = (\kappa^{2} + |\xi|^{2})^{\frac{\alpha}{2}}$ (21)

 $\alpha = 1.67$, $\kappa = \frac{1}{5}$. Normalized variance.

$$(\kappa^2-\Delta)^{rac{lpha}{2}}U=W$$
 ; $g(\xi)=(\kappa^2+|\xi|^2)^{rac{lpha}{2}}$

(22)

 $\alpha = 1.33$, $\kappa = \frac{1}{5}$. Normalized variance.

MATÉRN MODEL

$$(\kappa^2-\Delta)^{rac{lpha}{2}}U=W$$
 ; $g(\xi)=(\kappa^2+|\xi|^2)^{rac{lpha}{2}}$

(23)

 $\alpha = 1$, $\kappa = \frac{1}{5}$. Normalized variance.

MATÉRN MODEL

$$(\kappa^2-\Delta)^{rac{lpha}{2}}U=W$$
 ; $g(\xi)=(\kappa^2+|\xi|^2)^{rac{lpha}{2}}$

(24)

 $\alpha = 0.67$, $\kappa = \frac{1}{5}$. Normalized variance.

MATÉRN MODEL

$$(\kappa^2 - \Delta)^{rac{lpha}{2}} U = W$$
 ; $g(\xi) = (\kappa^2 + |\xi|^2)^{rac{lpha}{2}}$

(25)

 $\alpha = 0.33$, $\kappa = \frac{1}{5}$. Normalized variance.

LIM-TEO GENERALIZATION OF MATÉRN MODEL [LIM & TEO, 2009]

$$(\kappa^{2} + (-\Delta)^{\alpha})^{\frac{\gamma}{2}} U = W \quad ; \quad g(\xi) = (\kappa^{2} + |\xi|^{2\alpha})^{\frac{\gamma}{2}}$$
(26)

LIM-TEO GENERALIZATION OF MATÉRN MODEL [LIM & TEO, 2009]

$$(\kappa^{2} + (-\Delta)^{\alpha})^{\frac{\gamma}{2}} U = W \quad ; \quad g(\xi) = (\kappa^{2} + |\xi|^{2\alpha})^{\frac{\gamma}{2}}$$
(26)

 $\kappa = \frac{1}{5}$. Normalized variance.

$$\mathcal{L}_g U = W \quad ; \quad g(\xi) = g_R(\xi) + i g_I(\xi) \tag{27}$$

Example:

$$g(\xi) = g_{\mathcal{R}}(\xi) + iv^{T}\xi \quad \rightarrow \quad \mathcal{L}_{g_{\mathcal{R}}}U + v^{T}\nabla U = W,$$
⁽²⁸⁾

for $v \in \mathbb{R}^d$.

$$\mathcal{L}_g U = W \quad ; \quad g(\xi) = g_R(\xi) + i g_I(\xi) \tag{27}$$

Example:

$$g(\xi) = g_R(\xi) + i v^T \xi \quad \to \quad \mathcal{L}_{g_R} U + v^T \nabla U = W,$$
⁽²⁸⁾

for $v \in \mathbb{R}^d$.

$$g(\xi) = (\kappa^2 + |\xi|^2)^{\frac{\alpha}{2}} + i\nu^T \xi$$
. $\alpha = 2$, $\kappa = \frac{1}{5}$, $\nu = (-1, 4)$. Normalized variance.

For less conventional advections:

$$g_I(\xi) = f(v^T \xi), \tag{29}$$

with f an odd function.

For less conventional advections:

$$g_I(\xi) = f(v^T \xi), \tag{29}$$

with f an odd function.

SEPARATED REGULARITY

$$\left(\kappa^{2} + \left(-\frac{\partial^{2}}{\partial x_{1}^{2}}\right)^{\alpha_{1}} + \left(-\frac{\partial^{2}}{\partial x_{2}^{2}}\right)^{\alpha_{2}}\right)U = W \quad ; \quad g(\xi) = \kappa^{2} + |\xi_{1}|^{2\alpha_{1}} + |\xi_{2}|^{2\alpha_{2}}$$

$$(30)$$

SEPARATED REGULARITY

$$\left(\kappa^{2} + \left(-\frac{\partial^{2}}{\partial x_{1}^{2}}\right)^{\alpha_{1}} + \left(-\frac{\partial^{2}}{\partial x_{2}^{2}}\right)^{\alpha_{2}}\right)U = W \quad ; \quad g(\xi) = \kappa^{2} + |\xi_{1}|^{2\alpha_{1}} + |\xi_{2}|^{2\alpha_{2}}$$

$$(30)$$

 α

$$\left(\kappa^2 - \frac{\partial^2}{\partial x_1^2}\right)^{\frac{\alpha}{2}} U + \frac{\partial^{\beta} U}{\partial x_2^{\beta}} = W \quad ; \quad g(\xi) = (\kappa^2 + |\xi_1|^2)^{\frac{\alpha}{2}} + (i\xi_2)^{\beta} \tag{31}$$

 α

$$\left(\kappa^2 - \frac{\partial^2}{\partial x_1^2}\right)^{\frac{\alpha}{2}} U + \frac{\partial^{\beta} U}{\partial x_2^{\beta}} = W \quad ; \quad g(\xi) = (\kappa^2 + |\xi_1|^2)^{\frac{\alpha}{2}} + (i\xi_2)^{\beta} \tag{31}$$

$$\left(\kappa^2 - \frac{\partial^2}{\partial x_1^2}\right)^{\frac{\alpha}{2}} U + \frac{\partial^{\beta} U}{\partial x_2^{\beta}} = W \quad ; \quad g(\xi) = (\kappa^2 + |\xi_1|^2)^{\frac{\alpha}{2}} + (i\xi_2)^{\beta} \tag{32}$$

 $\kappa^2 = \left(\frac{1}{5}\right)^2$. Normalized variance.

0

$$\left(\kappa^2 - \frac{\partial^2}{\partial x_1^2}\right)^{\frac{\alpha}{2}} U + \frac{\partial^{\beta} U}{\partial x_2^{\beta}} = W \quad ; \quad g(\xi) = (\kappa^2 + |\xi_1|^2)^{\frac{\alpha}{2}} + (i\xi_2)^{\beta} \tag{33}$$

 $\kappa^2 = \left(\frac{1}{5}\right)^2$. Normalized variance.

Section 4

Some Spatio-temporal SPDE-based models

Specifications

- \bullet We keep the same spatial domain $[0,100]\times[0,100].$
- We simulate over regular temporal grids of step *dt* = 0.1, considering 100 time steps.
- The approximations are *spatial*. The models presented satisfy *exactly* the spatio-temporal SPDE presented.

$$\begin{cases} \frac{\partial U}{\partial t} + \mathcal{L}_g U = X_S \otimes W_T \\ U \Big|_{t=0} = U_0 \end{cases}$$
(34)

$$\begin{cases} \frac{\partial U}{\partial t} + \mathcal{L}_g U = X_S \otimes W_T \\ U \Big|_{t=0} = U_0 \end{cases}$$
(34)

• U₀: a stationary spatial initial condition.

$$\begin{cases} \frac{\partial U}{\partial t} + \mathcal{L}_g U = X_S \otimes W_T \\ U \Big|_{t=0} = U_0 \end{cases}$$
(34)

- U_0 : a stationary spatial initial condition.
- $X_S \otimes W_T$: coloured in space, white-in-time noise, independent of U_0 (X_S represents any spatial stationary random field).

$$\begin{cases} \frac{\partial U}{\partial t} + \mathcal{L}_g U = X_S \otimes W_T \\ U \Big|_{t=0} = U_0 \end{cases}$$
(34)

- U₀: a stationary spatial initial condition.
- $X_S \otimes W_T$: coloured in space, white-in-time noise, independent of U_0 (X_S represents any spatial stationary random field).
- $g : \mathbb{R}^d \to \mathbb{C}$ a *spatial* symbol function, with $\Re g \ge \kappa$ for some $\kappa > 0$.

$$\begin{cases} \frac{\partial U}{\partial t} + \mathcal{L}_g U = X_S \otimes W_T \\ U \Big|_{t=0} = U_0 \end{cases}$$
(34)

- U₀: a stationary spatial initial condition.
- $X_S \otimes W_T$: coloured in space, white-in-time noise, independent of U_0 (X_S represents any spatial stationary random field).
- $g: \mathbb{R}^d \to \mathbb{C}$ a *spatial* symbol function, with $\Re g \ge \kappa$ for some $\kappa > 0$.

•
$$\mathcal{L}_g = \mathscr{F}_S^{-1}(g\mathscr{F}_S(\cdot)).$$

Following [Sigrist et al., 2015]

We use our approximation method *spatially*, and solve *explicitly* the equation in time.

$$\begin{cases} \frac{\partial U}{\partial t} + v^{T} \nabla U + (\kappa^{2} - \Delta)^{\frac{\alpha}{2}} U = X_{S} \otimes W_{T} \\ U \Big|_{t=0} = 0 \end{cases}$$
(35)

$$\kappa = \left(\frac{1}{5}\right)^2$$
, $\alpha = 3.12$, $v = (2,5)$. X_S Matérn with $\kappa_{X_S}^2 = \left(\frac{1}{5}\right)^2$, $\alpha_{X_S} = 0.65$.

$$\begin{cases} \frac{\partial U}{\partial t} + v^{T} \nabla U + (\kappa^{2} + (-\Delta)^{\alpha})^{\frac{\gamma}{2}} U = X_{S} \otimes W_{T} \\ U \Big|_{t=0} = W_{0} \end{cases}$$
(36)

 $\kappa = \left(\frac{1}{5}\right)^2$, $\alpha = 3.12$, $\gamma = 0.75$, v = (-2, -5). X_S with separated regularities, $\kappa_{X_S}^2 = \left(\frac{1}{5}\right)^2$, $\alpha_{X_S,1} = 2.3$. $\alpha_{X_S,1} = 0.7$. W_0 a unitary spatial White Noise.

WAVING MODELS

Stationary solutions for the Homogeneous Wave Equation:

$$\frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = 0.$$
(37)
Stationary solutions for the Homogeneous Wave Equation:

$$\frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = 0. \tag{37}$$

It can be shown [Carrizo Vergara et al., 2018] that there are infinitely many possible stationary models following this equation, for which we can *control its spatial behaviour arbitrarily*.

Stationary solutions for the Homogeneous Wave Equation:

$$\frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = 0. \tag{37}$$

It can be shown [Carrizo Vergara et al., 2018] that there are infinitely many possible stationary models following this equation, for which we can *control its spatial behaviour arbitrarily*.

ADAPTATION

We select the tag-points in $\mathbb{R}^d \times \mathbb{R}$ being set over the *spatio-temporal cone*:

$$\{(\xi,\omega)\in\mathbb{R}^d\times\mathbb{R}\mid |\omega|=c|\xi|\},\tag{38}$$

which is the set where the spatio-temporal symbol function $g(\xi, \omega) = -\omega^2 + c^2 |\xi|^2$ is null. Then, we apply a spatio-temporal Fourier Transform.

$$\begin{cases} \frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = 0 & \text{over } \mathbb{R}^d \times \mathbb{R} \\ a(\kappa^2 - \Delta)^{\frac{\alpha}{2}} U_S \stackrel{2nd \ o}{=} W_S & \text{over } \mathbb{R}^d \end{cases}.$$
(39)

$$\kappa^2 = \left(\frac{1}{5}\right)^2$$
, $\alpha = 2$, $c = 8$. *a* is a normalizing constant.

$$\begin{cases} \frac{\partial^2 U}{\partial t^2} - c^2 \Delta U = 0 & \text{over } \mathbb{R}^d \times \mathbb{R} \\ a(\kappa^2 - \Delta)^{\frac{\alpha}{2}} U_S \stackrel{2nd}{=} {}^o W_S & \text{over } \mathbb{R}^d \end{cases}.$$
(40)

Spatial experimental variograms. In red, the theoretical Matérn variogram with unitary variance remarked in blue.

Section 5

DISCUSSION

33 R. Carrizo Vergara, N. Desassis, D. Allard Simulations of SPDE-based stationary Random Fields 08/11/2018 42 / 48

Advantages

• HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.

ADVANTAGES

- HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.
- Easy adaptability to spatio-temporal context with non-trivial properties and presenting traditional physical meaning.

Advantages

- HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.
- Easy adaptability to spatio-temporal context with non-trivial properties and presenting traditional physical meaning.
- Fast computation when using the FFT algorithm.

Advantages

- HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.
- Easy adaptability to spatio-temporal context with non-trivial properties and presenting traditional physical meaning.
- Fast computation when using the FFT algorithm.

DISADVANTAGES

• Memory consuming.

Advantages

- HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.
- Easy adaptability to spatio-temporal context with non-trivial properties and presenting traditional physical meaning.
- Fast computation when using the FFT algorithm.

DISADVANTAGES

- Memory consuming.
- Not immediate expression for precision matrices for irregular data. Not sparsity. The method is not immediately adapted to make inferences as the FEM does.

Advantages

- HUGE freedom and generality. Able to study models related to a wide-class of SPDEs having interesting properties.
- Easy adaptability to spatio-temporal context with non-trivial properties and presenting traditional physical meaning.
- Fast computation when using the FFT algorithm.

DISADVANTAGES

- Memory consuming.
- Not immediate expression for precision matrices for irregular data. Not sparsity. The method is not immediately adapted to make inferences as the FEM does.
- The convergence of the approximation to the target model are slower than expected, requiring higher computational costs to have good approximations specially in cases with low regularity.

MATÉRN MODEL: QUALITATIVE ERROR ANALYSIS

 $\alpha = 4$, $\kappa^2 = \left(\frac{1}{5}\right)^2$. Comparison between the avarage of the experimental variogram of 50 independent simulations and the target Matérn variogram. Normalized.

MATÉRN MODEL: QUALITATIVE ERROR ANALYSIS

 $\alpha = 2$, $\kappa^2 = \left(\frac{1}{5}\right)^2$. Comparison between the avarage of the experimental variogram of 50 independent simulations and the target Matérn variogram. Normalized.

MATÉRN MODEL: QUALITATIVE ERROR ANALYSIS

 $\alpha = 1.5$, $\kappa^2 = \left(\frac{1}{5}\right)^2$. Comparison between the avarage of the experimental variogram of 50 independent simulations and the target Matérn variogram. Normalized.

Section 6

MUCHAS GRACIAS

References

- CARRIZO VERGARA, R., DESASSIS, N., ALLARD, D. (2018). A general framework for SPDE-based stationary random fields. *arXiv preprint arXiv:1806.04999*.
- LANG, A. AND POTTHOFF, J. (2011). Fast simulation of Gaussian random fields. *Monte Carlo Methods and Applications, 17(3),* 195-214.
- LIM, S.C. AND TEO, L.P. (2009). Generalized Whittle-Matérn random field as a model of correlated fluctuations. *Journal of Physics A: Mathematical and Theoretical, 42(10).*
- LINDGREN F., RUE H. AND LINDSTRÖM J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society: Series B*, 73(4), 423-498.
- PARDO-IGUZQUIZA, E. AND CHICA-OLMO, M. (1993). The Fourier integral method: an efficient spectral method for simulation of random fields. *Mathematical Geology*, 25(2), 177-217.
- SIGRIST, F., KÜNSCH, H. R., AND STAHEL, W. A. (2015). Stochastic partial differential equation based modeling of large space-time data sets. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 77(1), 3-33.