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Section 1

Introduction
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Simulations within the SPDE Approach

In the SPDE Approach [Lindgren et al., 2011] we relate the studied Random Field
to a SPDE: we avoid to work explicitly with covariance functions and matrices.

Simulations can be performed solving the SPDE through a PDE numerical
method:

Finite Difference Method.

Finite Element Method.

Spectral Method (in the PDE sense).

Issue:
These methods are often conceived under the context of a particular operator.
They cannot simply be applied under more general SPDEs without suitable
adaptations.
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A spectral method

In this presentation we study an already existent method for simulating stationary
random fields.

[Pardo-Iguzquiza and Chica-Olmo, 1993]: conception in a geostatistical
context with applications.

[Lang & Potthoff, 2011]: conception in a SPDE context.

Advantages
This method is quite general, and it will allow us to obtain simulations for models
beyond the Matérn model and being related to SPDEs involving a wide-class of
pseudo-differential operators.

This method can be catalogued as a spectral method in both PDE and
geostatistical senses.
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Section 2

Theoretical Principles
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Principles

We consider a Riemann sequence of partitions growing to Rd :
(V N

j )j∈{1,...,N},N∈N∗ , a collection of bounded Borel sets of Rd such that

V N
j ∩ V N

k = ∅, for all j , k ∈ {1, ...,N} such that j 6= k, for all N ∈ N∗
`N := max

j∈{1,...,N}
diam(V N

j )→ 0 as N →∞

for all K ⊂ Rd compact, there exists N0 ∈ N such that for all N ≥ N0,
K ⊂

⋃N
j=1 V

N
j

We consider in addition a collection of tag-points: (ξNj )j∈{1,...,N},N∈N∗ ⊂ Rd , such

that ξNj ∈ V N
j , for all j ∈ {1, ...,N},N ∈ N∗.

Inspiration

If µ is a locally finite measure over Rd , it can be approximated by

µN =
N∑
j=1

µ(V N
j )δξNj (1)
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Principles

If Z is a real stationary Random Field over Rd , then MZ = F (Z ) is an Hermitian
slow-growing orthogonal Random Measure.

Approximating the orthogonal Random Measure

MZN
:=

N∑
j=1

MZ (V N
j )δξNj (2)

Approximating the field

ZN(x) := F−1

 N∑
j=1

MZ (V N
j )δξNj

 (x) =
1

(2π)
d
2

N∑
j=1

MZ (V N
j )e ix

T ξNj (3)

The random variables MZ (V N
j ) are non-correlated complex random variables, with

variance
Var(MZ (V N

j )) = (2π)
d
2 µZ (V N

j ), (4)

where µZ is the spectral measure of Z .
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Principles

(ZN(x))x∈Rd is a (complex) stationary Random Function with spectral measure
and covariance

µZN
=

N∑
j=1

µZ (V N
j )δξNj ; ρZN

(h) =
1

(2π)
d
2

N∑
j=1

µZ (V N
j )e ih

T ξNj . (5)

Result

If Z is a real and (mean-square) continuous stationary Random Function over Rd ,
then

sup
x∈K

E
(
|Z (x)− ZN(x)|2

)
→ 0, as N →∞,∀K ⊂ Rd compact. (6)

Vanishing bound

sup
x∈K

E
(
|Z (x)− ZN(x)|2

)
≤ 1

(2π)
d
2

4`2
NµZ (Rd) sup

x∈K
|x |2 + µZ

Rd \
N⋃
j=1

V N
j


(7)
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Principles

Remark: Generalized version

If Z is a real stationary Generalized Random Field over Rd (slow-growing spectral
measure, not necessarily finite), then

E
(
|〈Z , ϕ〉 − 〈ZN , ϕ〉|2

)
→ 0, as N →∞,∀ϕ ∈ S (Rd) (8)
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Application to SPDEs

Consider a SPDE over Rd of the form

LgU = X , (9)

where X is a real stationary Random Field over Rd and Lg = F−1(gF (·)), with

g : Rd → C an Hermitian ( g(ξ) = g(−ξ) ) continuous polynomially bounded
function (symbol function).

Fact [Carrizo Vergara et al., 2018]

If g is inferiorly bounded by the inverse of a strictly positive polynomial, there
exists a unique stationary solution given by

U = L 1
g
X (10)

IDEA [Lang & Potthoff, 2011]

Replace X with its approximation XN and then,

UN(x) = L 1
g
XN(x) = F−1

(
1

g

N∑
j=1

MX (V N
j )δξNj

)
(x) =

1

(2π)
d
2

N∑
j=1

MX (V N
j )

g(ξNj )
e ix

T ξNj

(11)
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Application to SPDEs

Result (generalized version)

E
(
|〈U, ϕ〉 − 〈UN , ϕ〉|2

)
→ 0, as N →∞,∀ϕ ∈ S (Rd) (12)

(Not precise) Result

If |g |−2 is integrable with respect to µX , U is a continuous stationary Random
Function. Under suitable conditions on g and/or X ,

sup
x∈K

E
(
|U(x)− UN(x)|2

)
→ 0, as N →∞,∀K ⊂ Rd compact. (13)

33 R. Carrizo Vergara, N. Desassis , D. Allard Simulations of SPDE-based stationary Random Fields 08/11/2018 11 / 48



Section 3

Implementation and Illustrations
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Implementation Details

The Random Function UN is periodic → restrict the evaluation to a domain.

The Random Function UN is complex. If a real approximation is desired, the
sequence of partitions (V N

j )j∈{1,...,N},N∈N∗ and the tag points

(ξNj )j∈{1,...,N},N∈N∗ must be selected such that MUN
= F (UN) is Hermitian.

The Random Function UN is smooth in mean-square. Regular models will be
better approximated.

The complex random variables MX (V N
j ) are non-correlated, but not

necessarily independent. For instance, MX (V N
j ) = MX (−V N

j ).

The simulation of UN can be computed for arbitrary tag points and over any
arbitrary point x in the space. If the number of evaluation points is M ∈ N∗,
the algorithm has a complexity O(MN).

In order to apply fast computation algorithms as the FFT, we need both the
tag points and the evaluation points to be set in convenient regular grids. In
such a case the complexity is O(log(M)N).
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Implementation Details

Specifications

All the spatial simulations are set over [0, 100]× [0, 100].

The approximation order is N = 212 in every axe.

The spatial regular grid, which depends on N, is of 567× 567 points.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (14)

α = 4, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (15)

α = 3.67, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (16)

α = 3.33, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (17)

α = 3, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (18)

α = 2.67, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (19)

α = 2.33, κ = 1
5
. Normalized variance.
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Matérn Model
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α
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α = 2, κ = 1
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α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (21)
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (22)

α = 1.33, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (23)

α = 1, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (24)

α = 0.67, κ = 1
5
. Normalized variance.
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Matérn Model

(κ2 −∆)
α
2 U = W ; g(ξ) = (κ2 + |ξ|2)

α
2 (25)

α = 0.33, κ = 1
5
. Normalized variance.
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Lim-Teo Generalization of Matérn model
[Lim & Teo, 2009]

(κ2 + (−∆)α)
γ
2 U = W ; g(ξ) = (κ2 + |ξ|2α)

γ
2 (26)

(a) α = 0.5, γ = 4 (b) α = 3, γ = 2
3

κ = 1
5
. Normalized variance.
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Adding advections

LgU = W ; g(ξ) = gR(ξ) + igI (ξ) (27)

Example:
g(ξ) = gR(ξ) + ivT ξ → LgRU + vT∇U = W , (28)

for v ∈ Rd .

g(ξ) = (κ2 + |ξ|2)
α
2 + ivT ξ. α = 2, κ = 1

5
, v = (−1, 4). Normalized variance.
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Adding Advections

For less conventional advections:

gI (ξ) = f (vT ξ), (29)

with f an odd function.

(a) g(ξ) = (κ2 + |ξ|2)
α
2 +

i(vT ξ)3
(b) g(ξ) = (κ2 + |ξ|2)

α
2 +

i arctan(vT ξ)
(c) g(ξ) = (κ2 + |ξ|2)

α
2 +

i sin(vT ξ)

κ = 1
5

, α = 2, v = (−1, 4). Normalized variance.
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Separated Regularity

(
κ2 +

(
− ∂2

∂x2
1

)α1

+

(
− ∂2

∂x2
2

)α2
)
U = W ; g(ξ) = κ2 + |ξ1|2α1 + |ξ2|2α2

(30)

(a) α1 = 3, α2 = 0.7 (b) Trace at a fixed x2 (c) Trace at a fixed x1

κ2 =
(

1
5

)2
. Normalized variance.
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∂x2
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)α2
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U = W ; g(ξ) = κ2 + |ξ1|2α1 + |ξ2|2α2

(30)
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1
5
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Separated Regularity + Asymmetries

(
κ2 − ∂2

∂x2
1

)α
2

U +
∂βU

∂xβ2
= W ; g(ξ) = (κ2 + |ξ1|2)

α
2 + (iξ2)β (31)

(a) α = 4, β = 0.7 (b) Trace at a fixed x2 (c) Trace at a fixed x1

κ2 =
(

1
5

)2
. Normalized variance.

33 R. Carrizo Vergara, N. Desassis , D. Allard Simulations of SPDE-based stationary Random Fields 08/11/2018 31 / 48



Separated Regularity + Asymmetries

(
κ2 − ∂2

∂x2
1

)α
2

U +
∂βU

∂xβ2
= W ; g(ξ) = (κ2 + |ξ1|2)

α
2 + (iξ2)β (31)

(a) α = 4, β = 0.7 (b) Trace at a fixed x2 (c) Trace at a fixed x1

κ2 =
(

1
5

)2
. Normalized variance.
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Separated Regularity + Asymmetries

(
κ2 − ∂2

∂x2
1

)α
2

U +
∂βU

∂xβ2
= W ; g(ξ) = (κ2 + |ξ1|2)

α
2 + (iξ2)β (32)

(a) α = 2, β = 1.8 (b) Trace at a fixed x2 (c) Trace at a fixed x1

κ2 =
(

1
5

)2
. Normalized variance.
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Separated Regularity + Asymmetries

(
κ2 − ∂2

∂x2
1

)α
2

U +
∂βU

∂xβ2
= W ; g(ξ) = (κ2 + |ξ1|2)

α
2 + (iξ2)β (33)

(a) α = 0.7, β = 4 (b) Trace at a fixed x2 (c) Trace at a fixed x1

κ2 =
(

1
5

)2
. Normalized variance.
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Section 4

Some Spatio-temporal SPDE-based models
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Implementation details

Specifications

We keep the same spatial domain [0, 100]× [0, 100].

We simulate over regular temporal grids of step dt = 0.1, considering 100
time steps.

The approximations are spatial. The models presented satisfy exactly the
spatio-temporal SPDE presented.
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First Order Evolution Model

{
∂U

∂t
+ LgU = XS ⊗WT

U
∣∣
t=0

= U0

. (34)

U0: a stationary spatial initial condition.

XS ⊗WT : coloured in space, white-in-time noise, independent of U0 (XS

represents any spatial stationary random field).

g : Rd → C a spatial symbol function, with <g ≥ κ for some κ > 0.

Lg = F−1
S (gFS(·)).

Following [Sigrist et al., 2015]

We use our approximation method spatially, and solve explicitly the equation in
time.
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First Order Evolution Model

{
∂U

∂t
+ vT∇U + (κ2 −∆)

α
2 U = XS ⊗WT

U
∣∣
t=0

= 0
. (35)

κ =
(

1
5

)2
, α = 3.12, v = (2, 5). XS Matérn with κ2

XS
=
(

1
5

)2
, αXS

= 0.65.

33 R. Carrizo Vergara, N. Desassis , D. Allard Simulations of SPDE-based stationary Random Fields 08/11/2018 37 / 48



First Order Evolution Model

{
∂U

∂t
+ vT∇U + (κ2 + (−∆)α)

γ
2 U = XS ⊗WT

U
∣∣
t=0

= W0

. (36)

κ =
(

1
5

)2
, α = 3.12, γ = 0.75, v = (−2,−5). XS with separated regularities,

κ2
XS

=
(

1
5

)2
, αXS ,1 = 2.3. αXS ,1 = 0.7. W0 a unitary spatial White Noise.
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Waving Models

Stationary solutions for the Homogeneous Wave Equation:

∂2U

∂t2
− c2∆U = 0. (37)

It can be shown [Carrizo Vergara et al., 2018] that there are infinitely many
possible stationary models following this equation, for which we can control its
spatial behaviour arbitrarily.

Adaptation

We select the tag-points in Rd × R being set over the spatio-temporal cone:

{(ξ, ω) ∈ Rd × R
∣∣ |ω| = c |ξ|}, (38)

which is the set where the spatio-temporal symbol function g(ξ, ω) = −ω2 + c2|ξ|2
is null. Then, we apply a spatio-temporal Fourier Transform.
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Waving Models

{
∂2U
∂t2 − c2∆U = 0 over Rd × R
a(κ2 −∆)

α
2 US

2nd o
= WS over Rd

. (39)

κ2 =
(

1
5

)2
, α = 2, c = 8. a is a normalizing constant.
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Waving Models

{
∂2U
∂t2 − c2∆U = 0 over Rd × R
a(κ2 −∆)

α
2 US

2nd o
= WS over Rd

. (40)

Spatial experimental variograms. In red, the theoretical Matérn variogram with
unitary variance remarked in blue.
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Section 5

Discussion
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Discussion

Advantages
HUGE freedom and generality. Able to study models related to a wide-class
of SPDEs having interesting properties.

Easy adaptability to spatio-temporal context with non-trivial properties and
presenting traditional physical meaning.

Fast computation when using the FFT algorithm.

Disadvantages
Memory consuming.

Not immediate expression for precision matrices for irregular data. Not
sparsity. The method is not immediately adapted to make inferences as the
FEM does.

The convergence of the approximation to the target model are slower than
expected, requiring higher computational costs to have good approximations
specially in cases with low regularity.
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sparsity. The method is not immediately adapted to make inferences as the
FEM does.

The convergence of the approximation to the target model are slower than
expected, requiring higher computational costs to have good approximations
specially in cases with low regularity.
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Matérn Model: Qualitative Error Analysis

(a) N = 210 (b) N = 211

(c) N = 212

α = 4, κ2 =
(

1
5

)2
. Comparison between the avarage of the experimental variogram of 50

independent simulations and the target Matérn variogram. Normalized.
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Matérn Model: Qualitative Error Analysis

(a) N = 210 (b) N = 211

(c) N = 212

α = 2, κ2 =
(

1
5

)2
. Comparison between the avarage of the experimental variogram of 50

independent simulations and the target Matérn variogram. Normalized.
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Matérn Model: Qualitative Error Analysis

(a) N = 210 (b) N = 211

(c) N = 212

α = 1.5, κ2 =
(

1
5

)2
. Comparison between the avarage of the experimental variogram of

50 independent simulations and the target Matérn variogram. Normalized.
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Section 6

MUCHAS GRACIAS
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