Finite element simulations of non-Markovian random fields on Riemannian manifolds

Mike PEREIRA^{1,2}, Nicolas DESASSIS¹

 $^1{\rm Geostatistics}$ team, MINES ParisTech, PSL Research University $^2{\rm ESTIMAGES}$ / ShoWhere

SPDE-INLA Workshop RESSTE November 8th, 2018

Continuous Markov random fields

P **polynomial** taking strictly positive value on \mathbb{R}_+ .

If Z is a continuous Markov random field field,

AW

• its spectral density (Fourier transform of the covariance function) of the form (Rozanov, 1977):

 $g(\omega) = 1/P(\|\omega\|^2)$

P **polynomial** taking strictly positive value on \mathbb{R}_+ .

- If Z is a continuous Markov random field field,
 - its spectral density (Fourier transform of the covariance function) of the form (Rozanov, 1977):

$$g(\boldsymbol{\omega}) = 1/P(\|\boldsymbol{\omega}\|^2)$$

 it can be seen as a solution of a stochastic partial derivative equations of the form (Rozanov, 1977, Simpson et al., 2012):

$$P(-\Delta)^{1/2}Z = W$$

where \mathcal{W} is a Gaussian white noise, and $P(-\Delta)^{1/2}$ is the differential operator defined as :

$$P(-\Delta)^{1/2}[.] = \mathscr{F}^{-1}\left[\omega\mapsto \sqrt{P(\|\omega\|^2)}\mathscr{F}[.](\omega)
ight]$$

where \mathscr{F} denotes the Fourier transform operator.

AW

Representation of Markov random fields

Simulate Markovian fields by solving numerically the SPDE:

$$P(-\Delta)^{1/2}Z = \mathcal{W} \tag{1}$$

using finite element method :

AW

$$Z(s) = \sum z_i \psi_i(s) \ , \ \ s \in \mathcal{D}$$

where $\{\psi_i\}$ are basis functions on a triangulated domain \mathcal{D} (bounded polygonal or manifold), and $\{z_i\}$ are Gaussian weights.

Representation of Markov random fields

Simulate Markovian fields by solving numerically the SPDE:

$$P(-\Delta)^{1/2}Z = \mathcal{W} \tag{1}$$

using finite element method :

$$Z(s) = \sum z_i \psi_i(s)$$
, $s \in \mathcal{D}$

where $\{\psi_i\}$ are basis functions on a triangulated domain \mathcal{D} (bounded polygonal or manifold), and $\{z_i\}$ are Gaussian weights.

Proposition : Markov random fields (Lindgren et al., 2011)

The precision matrix of the weights $\{z_i\}$ of the finite element (FE) representation of the stationary solutions of (1) is:

$$\boldsymbol{Q}_z = \boldsymbol{C}^{1/2} \boldsymbol{P}(\boldsymbol{S}) \boldsymbol{C}^{1/2}$$

where:

$$\boldsymbol{C} = \text{Diag}(\langle \psi_i, 1 \rangle), \quad \boldsymbol{G} = [\langle \nabla \psi_i, \nabla \psi_j \rangle], \quad \boldsymbol{S} = \boldsymbol{C}^{-1/2} \boldsymbol{G} \boldsymbol{C}^{-1/2}$$

 \Rightarrow For spectral densities of the form:

$$g(\|\omega\|) = rac{1}{P(\|\omega\|^2)}$$

Proposition : Generalized random field (Lang and Potthoff, 2011)

Λw

A second-order stationary, isotropic Gaussian random field Z with spectral density $g : \mathbb{R}_+ \mapsto \mathbb{R}_+$ on $\mathcal{D} \subset \mathbb{R}^d$ can be expressed as:

$$Z = \mathcal{L}_{\sqrt{g}} \mathcal{W}$$
 (2)

where $\mathcal{L}_{\sqrt{g}}[.] := \mathscr{F}^{-1}\left[\omega \mapsto \sqrt{g(\|\omega\|^2)}\mathscr{F}[.](\omega)\right]$ and \mathcal{W} is a Gaussian white noise on \mathcal{D} .

Proposition : Generalized random field (Lang and Potthoff, 2011)

A second-order stationary, isotropic Gaussian random field Z with spectral density $g : \mathbb{R}_+ \mapsto \mathbb{R}_+$ on $\mathcal{D} \subset \mathbb{R}^d$ can be expressed as:

$$Z = \mathcal{L}_{\sqrt{g}} \mathcal{W}$$
 (2)

where $\mathcal{L}_{\sqrt{g}}[.] := \mathscr{F}^{-1}\left[\omega \mapsto \sqrt{g(\|\omega\|^2)}\mathscr{F}[.](\omega)\right]$ and \mathcal{W} is a Gaussian white noise on \mathcal{D} .

By representing Z using a finite element approach, we showed:

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights $\{z_i\}$ of the FE representation of (2) is:

$$\boldsymbol{\Sigma}_{z} = \boldsymbol{C}^{-1/2} \boldsymbol{g}(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$$

where: $\boldsymbol{C} = \text{Diag}(\langle \psi_i, 1 \rangle), \ \boldsymbol{G} = [\langle \nabla \psi_i, \nabla \psi_j \rangle], \ \boldsymbol{S} = \boldsymbol{C}^{-1/2} \boldsymbol{G} \boldsymbol{C}^{-1/2},$ $\boldsymbol{S} = \boldsymbol{V} \begin{pmatrix} \lambda_1 \\ & \\ & \lambda_n \end{pmatrix} \boldsymbol{V}^{\mathsf{T}}, \quad \boldsymbol{g}(\boldsymbol{S}) = \boldsymbol{V} \begin{pmatrix} \boldsymbol{g}(\lambda_1) \\ & \\ & & \\ & & \boldsymbol{g}(\lambda_n) \end{pmatrix} \boldsymbol{V}^{\mathsf{T}}$

٨w

Same framework as in (Bolin et al., 2017).

- $L^2(\mathcal{D}) =$ Hilbert space of square-integrable function on \mathcal{D}
 - The negative Laplacian $-\Delta$ is a self-adjoint positive semi-definite operator on $L^2(\mathcal{D}) \Rightarrow$ Diagonalizable :
 - Countable eigenvalues : $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_j \le \ldots, \quad j \in \mathbb{N}$
 - the eigenfunctions of $-\Delta$ form an orthonormal basis of $L^2(\mathcal{D})$

Same framework as in (Bolin et al., 2017).

 $L^2(\mathcal{D}) =$ Hilbert space of square-integrable function on \mathcal{D}

- The negative Laplacian $-\Delta$ is a self-adjoint positive semi-definite operator on $L^2(\mathcal{D}) \Rightarrow$ Diagonalizable :
 - Countable eigenvalues : $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_j \le \dots$, $j \in \mathbb{N}$
 - the eigenfunctions of $-\Delta$ form an orthonormal basis of $L^2(\mathcal{D})$
- \blacksquare It can be showed that then, the Gaussian white noise ${\cal D}$ can be expressed as :

$$\mathcal{W} = \sum_{j \in \mathbb{N}} \xi_j e_j$$

for a family of i.i.d. standard Gaussian weights $\{\xi_j\}_{j\in\mathbb{N}}$

• The generalized random field Z is given by :

$$Z = \mathcal{L}_{\sqrt{g}} \mathcal{W} = \sum_{j \in \mathbb{N}} \sqrt{g(\mu_j) \xi_j e_j}$$

Same framework as in (Bolin et al., 2017).

 $L^2(\mathcal{D}) =$ Hilbert space of square-integrable function on \mathcal{D}

- The negative Laplacian $-\Delta$ is a self-adjoint positive semi-definite operator on $L^2(\mathcal{D}) \Rightarrow$ Diagonalizable :
 - Countable eigenvalues : $0 \le \mu_1 \le \mu_2 \le \cdots \le \mu_j \le \ldots, \quad j \in \mathbb{N}$
 - the eigenfunctions of $-\Delta$ form an orthonormal basis of $L^2(\mathcal{D})$
- \blacksquare It can be showed that then, the Gaussian white noise ${\cal D}$ can be expressed as :

$$\mathcal{W} = \sum_{j \in \mathbb{N}} \xi_j e_j$$

for a family of i.i.d. standard Gaussian weights $\{\xi_j\}_{j\in\mathbb{N}}$

• The generalized random field Z is given by :

$$Z = \mathcal{L}_{\sqrt{g}} \mathcal{W} = \sum_{j \in \mathbb{N}} \sqrt{g(\mu_j)} \xi_j e_j$$

The finite element representation of Z is defined as the projection of Z onto the linear span of the basis functions $\text{span}\{\psi_k : k \in [\![1, n]\!]\} \subset L^2(\mathcal{D})$.

Pereira, Desassis

Definition

AW

- A Riemannian manifold $\mathcal{M} = (\mathcal{D}, H)$ of dim. *d* is a composed by:
 - $lacksymbol{\bullet}$ a manifold \mathcal{D} , i.e. a domain that "behaves" locally like \mathbb{R}^d
 - a metric H, i.e. a smooth application that associates to any s ∈ D an inner product on the tangent space of D at the point s.
 In particular, H can be seen as a family of positive definite matrices of size d indexed by the points of D

The Laplacian (or Laplace-Beltrami operator) on $\mathcal M$ is defined by:

$$\Delta_{\mathcal{M}} f = \frac{1}{\sqrt{\det H}} \sum_{i=1}^{d} \partial_i \left[\sqrt{\det H} \sum_{j=1}^{d} [H^{-1}]_{ij} \partial_j f \right]$$
$$= \frac{1}{\sqrt{\det H}} \operatorname{div} \left(\sqrt{\det H} H^{-1} \nabla f \right)$$

 \Rightarrow It is a self-adjoint positive semi-definite operator on $L^2(\mathcal{M})!$

 \Rightarrow Generalize the previous result to fields on \mathcal{M} (Pereira and Desassis, 2018b)

Generalization to Riemannian manifold II

Let $\mathcal{M} = (\mathcal{D}, \mathcal{H})$ be a Riemannian manifold and let $g : \mathbb{R}_+ \mapsto \mathbb{R}_+$. Let Z be the generalized random field defined by:

$$Z = \mathcal{L}_{\sqrt{g}} \mathcal{W} := \sum_{j \in \mathbb{N}} \sqrt{g(\mu_j)} \xi_j e_j$$
(3)

where:

AW

- $\{(\mu_j, e_j) : j \in \mathbb{N}\}$ are eigenpairs of the negative Laplacian $-\Delta_M$, forming an orthonormal basis of $L^2(\mathcal{M})$
- $\{\xi_j\}_{j\in\mathbb{N}}$ is a set of i.i.d. standard Gaussian weights

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights $\{z_i\}$ of the FE representation of (3) is:

$$\Sigma_z = \boldsymbol{C}^{-1/2} \boldsymbol{g}(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$$

where:

$$\begin{split} \boldsymbol{C} &= \mathsf{Diag}(\langle \sqrt{\det H}\psi_i, 1 \rangle), \quad \boldsymbol{G} &= [\langle \nabla \psi_i, \sqrt{\det H} H^{-1} \nabla \psi_j \rangle] \\ \boldsymbol{S} &= \boldsymbol{C}^{-1/2} \boldsymbol{G} \boldsymbol{C}^{-1/2} \end{split}$$

Now what?

General form of the covariance matrix of finite element representations of Gaussian fields :

$$\boldsymbol{\Sigma}_{z} = \boldsymbol{C}^{-1/2} g(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$$
(4)

where

- **C** is a diagonal matrix with strictly positive elements.
- **S** is a symmetric positive semi-definite matrix whose elements are inner products of gradients of the basis functions.
- \Rightarrow How to simulate weights with covariance matrix (4)?

Proposition : Simulation of SPDE FEM solutions

Weights $\mathbf{z} = (z_1, \dots, z_n)^T$ with covariance matrix Σ_z given by (4) can be simulated through:

$$m{z} = m{C}^{-1/2} \sqrt{g}(m{S}) m{arepsilon}$$

where ε is a Gaussian vector with independent standard components and $\sqrt{g}: \mathbb{R}_+ \mapsto \mathbb{R}$ satisfies $(\sqrt{g})^2 = g$.

Problem

How to compute
$$\sqrt{g}(\boldsymbol{S})\varepsilon$$
?
 $\boldsymbol{S} = \boldsymbol{V} \begin{pmatrix} \lambda_1 \\ & \\ & \lambda_n \end{pmatrix} \boldsymbol{V}^{T} \Rightarrow \sqrt{g}(\boldsymbol{S})\varepsilon = \boldsymbol{V} \begin{pmatrix} \sqrt{g}(\lambda_1) \\ & & \\ & & \sqrt{g}(\lambda_n) \end{pmatrix} \underline{\boldsymbol{V}^{T}\varepsilon}$

 \Rightarrow Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for $P(X) = \sum a_k X^k$

Problem

How to compute
$$\sqrt{g}(\boldsymbol{S})\varepsilon$$
?
 $\boldsymbol{S} = \boldsymbol{V} \begin{pmatrix} \lambda_1 \\ & \\ & \lambda_n \end{pmatrix} \boldsymbol{V}^T \Rightarrow \sqrt{g}(\boldsymbol{S})\varepsilon = \boldsymbol{V} \begin{pmatrix} \sqrt{g}(\lambda_1) & \\ & & \\ & & \sqrt{g}(\lambda_n) \end{pmatrix} \underline{\boldsymbol{V}^T}\varepsilon$

 \Rightarrow Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for $P(X) = \sum a_k X^k$

$$P(\boldsymbol{S})\boldsymbol{\varepsilon} = \boldsymbol{V} \begin{pmatrix} P(\lambda_1) & \\ & \ddots \\ & & P(\lambda_n) \end{pmatrix} \boldsymbol{V}^{\mathsf{T}} \boldsymbol{\varepsilon} = \sum a_k \boldsymbol{S}^k \boldsymbol{\varepsilon}$$

 $\rightarrow P(S)\varepsilon$ is computable iteratively without having to diagonalize S: only involves matrix-vector multiplications!

Problem

How to compute
$$\sqrt{g}(\boldsymbol{S})\varepsilon$$
?
 $\boldsymbol{S} = \boldsymbol{V}\begin{pmatrix}\lambda_{1} \\ \ddots \\ \ddots \\ \lambda_{n}\end{pmatrix}\boldsymbol{V}^{T} \Rightarrow \sqrt{g}(\boldsymbol{S})\varepsilon = \boldsymbol{V}\begin{pmatrix}\sqrt{g}(\lambda_{1}) \\ \ddots \\ \sqrt{g}(\lambda_{n})\end{pmatrix}\underline{\boldsymbol{V}^{T}\varepsilon}$

 \Rightarrow Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for $P(X) = \sum a_k X^k$

$$P(\boldsymbol{S})\boldsymbol{\varepsilon} = \boldsymbol{V} \begin{pmatrix} P(\lambda_1) & \\ & \ddots & \\ & & P(\lambda_n) \end{pmatrix} \boldsymbol{V}^{T} \boldsymbol{\varepsilon} = \sum a_k \boldsymbol{S}^k \boldsymbol{\varepsilon}$$

 $\rightarrow P(S)\varepsilon$ is computable iteratively without having to diagonalize S: only involves matrix-vector multiplications!

Problem

AW

F

low to compute
$$\sqrt{g}(\boldsymbol{S})\varepsilon$$
?
 $\boldsymbol{S} = \boldsymbol{V}\begin{pmatrix}\lambda_{1}\\ & \\ & \lambda_{n}\end{pmatrix}\boldsymbol{V}^{T} \Rightarrow \sqrt{g}(\boldsymbol{S})\varepsilon = \boldsymbol{V}\begin{pmatrix}\sqrt{g}(\lambda_{1})\\ & \\ & & \\ & & \sqrt{g}(\lambda_{n})\end{pmatrix}\underline{\boldsymbol{V}^{T}\varepsilon}$

 \Rightarrow Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for $P(X) = \sum a_k X^k$

$$P(\boldsymbol{S}) \boldsymbol{\varepsilon} = \boldsymbol{V} \begin{pmatrix} P(\lambda_1) & \\ & \ddots & \\ & & P(\lambda_n) \end{pmatrix} \boldsymbol{V}^{T} \boldsymbol{\varepsilon} = \sum a_k \boldsymbol{S}^k \boldsymbol{\varepsilon}$$

 $\rightarrow P(S)\varepsilon$ is computable iteratively without having to diagonalize S: only involves matrix-vector multiplications!

→ Instead of computing $\sqrt{g}(\mathbf{S})\varepsilon$, compute $P(\mathbf{S})\varepsilon$ where P is an approximation of \sqrt{g} over an interval containing $\{\lambda_1, \dots, \lambda_n\}$ $\Rightarrow P(\mathbf{S})\varepsilon \approx \sqrt{g}(\mathbf{S})\varepsilon$ because $P(\lambda_i) \approx \sqrt{g}(\lambda_i) \quad \forall i$

Chebyshev algorithm for weight simulation

Algorithm : Chebyshev simulation (Pereira and Desassis, 2018a)

Require: An order of approximation $K \in \mathbb{N}$. **Output**: A vector $\mathbf{z} \approx \mathbf{C}^{-1/2} \sqrt{g}(\mathbf{S}) \epsilon$.

- 1. Compute an interval [a, b] containing all the eigenvalues of ${m S}$
 - Ex: $[0, \sqrt{\text{Trace}(SS^{T})}]$, Gershgorin circle theorem
- 2. Compute an approximation (denoted P) of \sqrt{g} over [a,b] by truncating its Chebyshev series at order K
 - \rightarrow Coefficients of the decomposition in Chebyshev basis obtained by FFT
- 3. Compute $\boldsymbol{u} = P(\boldsymbol{S})\boldsymbol{\varepsilon}$ iteratively (only requires matrix to vector multiplications)
- 4. Return $\boldsymbol{z} = \boldsymbol{C}^{-1/2} \boldsymbol{u}$
- Computational complexity: $\mathcal{O}(Kn_{nz})$ operations, n_{nz} number of non-zero entries of **S**
- Question : How to choose the order of approximation K to get a "satisfying" output?

AW

An approached output

Initial Goal

AW

Simulate a zero-mean Gaussian vector with covariance matrix:

 $\boldsymbol{\Sigma} = \boldsymbol{C}^{-1/2} g(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$

Output of the algorithm

A zero-mean Gaussian vector

 $z_s = \boldsymbol{C}^{-1/2} P_K(\boldsymbol{S}) \boldsymbol{\varepsilon}$

with covariance matrix:

$$\boldsymbol{\Sigma}_{s} = \boldsymbol{C}^{-1/2} P_{K}^{2}(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$$

 \rightarrow When can the simulated output "pass" as the targeted one?

An approached output

Initial Goal

AW

Simulate a zero-mean Gaussian vector with covariance matrix:

 $\boldsymbol{\Sigma} = \boldsymbol{C}^{-1/2} g(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$

Output of the algorithm

A zero-mean Gaussian vector

 $z_s = \boldsymbol{C}^{-1/2} P_K(\boldsymbol{S}) \boldsymbol{\varepsilon}$

with covariance matrix:

$$\boldsymbol{\Sigma}_{s} = \boldsymbol{C}^{-1/2} P_{K}^{2}(\boldsymbol{S}) \boldsymbol{C}^{-1/2}$$

 \rightarrow When can the simulated output "pass" as the targeted one?

Idea: Use statistical tests on the output

- Let $\{z_s^{(1)}, ..., z_s^{(N)}\}$ be a *N*-sample of vectors simulated using the algorithm and $\boldsymbol{c} = (c_1, ..., c_n)^T \in \mathbb{R}^n$ be arbitrary coefficients.
- If the $z_s^{(i)}$ have covariance matrix Σ , then

$$\mathcal{S}(\boldsymbol{c}) = \{\boldsymbol{c}^{\mathsf{T}} \boldsymbol{z}_{\mathsf{s}}^{(1)}, ..., \boldsymbol{c}^{\mathsf{T}} \boldsymbol{z}_{\mathsf{s}}^{(N)}\}$$

is a Gaussian sample with variance $c^T \Sigma c$. \Rightarrow Use χ^2 test of variance on S(c) to check that.

Given that the actual distribution of S(c) is known (Gaussian with variance $c^T \Sigma_s c$), we can anticipate the results without actually realising any test!

Proposition : Statistical and approximation errors (Pereira and Desassis, 2018a)

Let $R_{\text{reject}}(\boldsymbol{c})$ be the probability that a χ^2 test with significance α on the *N*-sample $S(\boldsymbol{c})$ "fails" (i.e. null hypothesis rejected).

Then, $\forall \beta > 0$, $\exists \epsilon_{\beta} > 0$ such that :

$$\max_{\substack{\lambda \in [\lambda_{\min}, \lambda_{\max}] \\ \text{Error of the polynomial approximation}}} \left| \frac{g(\lambda) - P_{\mathcal{K}}(\lambda)^2}{P_{\mathcal{K}}(\lambda)^2} \right| \leq \epsilon_{\beta} \Rightarrow \forall \boldsymbol{c}, R_{\text{reject}}(\boldsymbol{c}) \leq (1 + \beta)\alpha$$

 ϵ_{β} can be numerically computed and depends on α , N and $\beta > 0$.

β	Sample Size N				
	50	100	1000	5000	10000
0,1%	6,40e-04	6,20e-04	4,80e-04	3,00e-04	2,40e-04
1%	5,44e-03	4,80e-03	2,36e-03	1,20e-03	8,60e-04
5%	1,89e-02	1,51e-02	5,94e-03	2,82e-03	2,02e-03
10%	3,00e-02	2,33e-02	8,64e-03	4,02e-03	2,88e-03
50%	7,66e-02	5,71e-02	1,98e-02	9,08e-03	6,46e-03
100%	1,10e-01	8,12e-02	2,80e-02	1,28e-02	9,10e-03

Table: Examples of $\epsilon_{N,\beta}$ values of for $\alpha = 0.05$

Λw

AvApplication : Simulation of "exotic" spectral densities

13 / 18

AvApplication : Simulation of "exotic" spectral densities

Simulation on 1000x1000 grid $Z = \mathcal{L}_{\sqrt{g}} \mathcal{W}$ with g is the spectral density o the Hyperspherical covariance.

Application : Simulation on the sphere

Simulation on a triangulated sphere of the field $Z = \mathcal{L}_g \mathcal{W}$ with $g(\|\omega\|^2) = (\kappa^4 + 2\kappa^2 \cos(2\pi\theta) \|\omega\|^2 + \|\omega\|^4)^{-2}$

Pereira, Desassis

۸Ŵ

Finite element simulations of non-Markovian random fields on Riemannian manifold

15 / 18

Aw Application : Simulation of non-stationary fields

Simulation on a Riemannian manifold of $Z = \mathcal{L}_g \mathcal{W}$ with $g(\|\omega\|^2) = (\kappa^2 + \|\omega\|^2)^{-1}$. The metric tensor is given by

$$H^{-1}(s) = R(s)^{\mathsf{T}}R(s), \quad R(s) = \begin{pmatrix} d_1(s) & 0\\ 0 & d_2(s) \end{pmatrix} \begin{pmatrix} \cos(\theta(s)) & -\sin(\theta(s))\\ \sin(\theta(s)) & \cos(\theta(s)) \end{pmatrix}$$

- Large class of Gaussian random fields : Characterized by their spectral density
- Large class of domains : manifolds and Riemannian manifolds
- Explicit expression of the covariance matrix of FE weights
- Efficient approximate algorithm for the computation of samples of weights : linear complexity
- Approximation error tolerance set to retrieve statistical properties

References

- Bolin, D., Kirchner, K., and Kovács, M. (2017). Numerical solution of fractional elliptic stochastic pdes with spatial white noise. *arXiv preprint arXiv:1705.06565*.
- Lang, A. and Potthoff, J. (2011). Fast simulation of gaussian random fields. Monte Carlo Methods and Applications, 17(3):195–214.
- Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields 670 and gaussian markov random fields: the spde approach (with discussion). JR 671 Stat Soc, Series B, 73:423–498.
- Pereira, M. and Desassis, N. (2018a). Efficient simulation of Gaussian Markov random fields by Chebyshev polynomial approximation. *arXiv:1805.07423*.
- Pereira, M. and Desassis, N. (2018b). Finite element approximation of non-Markovian random fields. *arXiv:1811.03004*.
- Rozanov, J. A. (1977). Markov random fields and stochastic partial differential equations. *Mathematics of the USSR-Sbornik*, 32(4):515.
- Simpson, D., Lindgren, F., and Rue, H. (2012). Think continuous: Markovian gaussian models in spatial statistics. *Spatial Statistics*, 1:16 29.

Thank you for your attention! Questions?

Aw Likelihood-based method for model inference I

Suppose that $g = g_{\theta}$ depends on a vector of parameters θ . The log-likelihood associated to z and θ is given by :

$$\mathcal{L}(\boldsymbol{z},\boldsymbol{\theta}) = -\frac{1}{2} \Big(N \log 2\pi + \log \det \big(g_{\boldsymbol{\theta}}(\boldsymbol{S}) \big) + \boldsymbol{z}^T \boldsymbol{C}^{1/2} g_{\boldsymbol{\theta}}(\boldsymbol{S})^{-1} \boldsymbol{C}^{1/2} \boldsymbol{z} \Big)$$

It can be expensive to compute/maximize...

Av Likelihood-based method for model inference II

Inverse approximation

$$\boldsymbol{z}^{T} \boldsymbol{C}^{1/2} \boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{S})^{-1} \boldsymbol{C}^{1/2} \boldsymbol{z} = \boldsymbol{z}^{T} \boldsymbol{C}^{1/2} \boldsymbol{V} \begin{pmatrix} 1/g_{\boldsymbol{\theta}}(\lambda_{1}) & & \\ & & \\ & & \\ & & \\ & & \\ \boldsymbol{z}^{T} \boldsymbol{C}^{1/2} \frac{1}{g_{\boldsymbol{\theta}}}(\boldsymbol{S}) \boldsymbol{C}^{1/2} \boldsymbol{z} \end{pmatrix} \boldsymbol{V}^{T} \boldsymbol{C}^{1/2} \boldsymbol{z}$$

 \Rightarrow Use polynomial approximation of $\frac{1}{g_{\theta}}$

Av Likelihood-based method for model inference II

Inverse approximation

$$z^{\mathsf{T}} \mathcal{C}^{1/2} g_{\theta}(\mathcal{S})^{-1} \mathcal{C}^{1/2} z = z^{\mathsf{T}} \mathcal{C}^{1/2} \mathcal{V} \begin{pmatrix} 1/g_{\theta}(\lambda_{1}) & & \\ & \ddots & \\ & & 1/g_{\theta}(\lambda_{n}) \end{pmatrix} \mathcal{V}^{\mathsf{T}} \mathcal{C}^{1/2} z$$
$$= z^{\mathsf{T}} \mathcal{C}^{1/2} \frac{1}{g_{\theta}}(\mathcal{S}) \mathcal{C}^{1/2} z$$

 \Rightarrow Use polynomial approximation of $\frac{1}{g_{\theta}}$

Determinant approximation

$$\log \det (g_{\theta}(\boldsymbol{S})) = \sum_{k=1}^{n} \log(g_{\theta}(\lambda_k)) \approx \sum_{m=0}^{M} \operatorname{hist}(a_m) \log(g_{\theta}(a_m))$$

where

$$\begin{split} \mathsf{hist}(\pmb{a}_m) &:= \mathsf{Card}\left\{i \in \llbracket 0, N-1 \rrbracket : \lambda_i \in]\pmb{a}_m - \frac{\tau}{2}, \pmb{a}_m + \frac{\tau}{2}]\right\} \\ &= \mathbb{E}\bigg(||\pmb{1}_{]\pmb{a}_m - \frac{\tau}{2}, \pmb{a}_m + \frac{\tau}{2}]}(\pmb{\mathsf{S}})\varepsilon||^2\bigg) \end{split}$$