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AV!’ Continuous Markov random fields

P polynomial taking strictly positive value on R,

If Z is a continuous Markov random field field,

m its spectral density (Fourier transform of the covariance function) of the form

(Rozanov, 1977):
g(w) =1/P(|lw|?)
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AV\, Continuous Markov random fields

P polynomial taking strictly positive value on R,

If Z is a continuous Markov random field field,

m its spectral density (Fourier transform of the covariance function) of the form
(Rozanov, 1977):
g(w) =1/P(|lw|?)
m it can be seen as a solution of a stochastic partial derivative equations of the
form (Rozanov, 1977, Simpson et al., 2012):
P(-A)Y2Z =W
where W is a Gaussian white noise, and P(—A)/? is the differential operator

defined as :
P(-2)2[] = 77 [w s VP(wP) ZL)(w)]

where .# denotes the Fourier transform operator.



AW Representation of Markov random fields

Simulate Markovian fields by solving numerically the SPDE:
P(-A)Y2Z =W (1)
using finite element method :

Z(s) =Y zwi(s)|, seD

where {1} are basis functions on a triangulated domain D (bounded polygonal or
manifold), and {z} are Gaussian weights.

Pereira, Desassis Finite element simulations of non-Markovian random fields on Riemannian manifolds



AW Representation of Markov random fields

Simulate Markovian fields by solving numerically the SPDE:
P(-A)Y2Z =W (1)
using finite element method :

Z(s) =Y zwi(s)|, seD

where {1} are basis functions on a triangulated domain D (bounded polygonal or
manifold), and {z} are Gaussian weights.

Proposition : Markov random fields (Lindgren et al., 2011)

The precision matrix of the weights {z;} of the finite element (FE) representation
of the stationary solutions of (1) is:

Q.= C'?P(s)C'/?

where:

C = Diag((vi,1)), G =[(V¢;, Vi), §=C26C2

= For spectral densities of the form:
(el = 7
g(lwl) = 57—
P(llwll?)



AW Extension to generalized random fields

Proposition : Generalized random field (Lang and Potthoff, 2011)

A second-order stationary, isotropic Gaussian random field Z with spectral density
g:R,+— R, on D C R can be expressed as:

Z=L W (2)
where £ []:= F ! [w — \/g(||w||2)5’7[.](w)} and W is a Gaussian white

noise on D.
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AW Extension to generalized random fields

Proposition : Generalized random field (Lang and Potthoff, 2011)

A second-order stationary, isotropic Gaussian random field Z with spectral density
g:R,+— R, on D C R can be expressed as:

Z=LW 2)

where £ []:= F ! [w — \/g(||w||2)5’7[.](w)} and W is a Gaussian white
noise on D.

By representing Z using a finite element approach, we showed:

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights {z} of the FE representation of (2) is:
¥, =C ?g(§)C?
where: C = Diag((¥;,1)), G = [(V4);, V)], § = C~Y/2GC~1/2,

A1 g(>‘1)
5=v< )vT, g(S):v< >vT
An g(\n)




AW Theoretical framework for the proof

Same framework as in (Bolin et al., 2017).

L?(D) = Hilbert space of square-integrable function on D

m The negative Laplacian —A is a self-adjoint positive semi-definite operator on
L?(D) = Diagonalizable :
m Countable eigenvalues : 0 < g <pp <--- <y <..., jeN
m the eigenfunctions of —A form an orthonormal basis of L*(D)
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W = ijej'
JEN
for a family of i.i.d. standard Gaussian weights {&;}jcn
m The generalized random field Z is given by :
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AW Theoretical framework for the proof

Same framework as in (Bolin et al., 2017).

L?(D) = Hilbert space of square-integrable function on D

m The negative Laplacian —A is a self-adjoint positive semi-definite operator on
L?(D) = Diagonalizable :
m Countable eigenvalues : 0 < g <pp <--- <y <..., jeN
m the eigenfunctions of —A form an orthonormal basis of L*(D)

m It can be showed that then, the Gaussian white noise D can be expressed as :
W = ijej'
JEN
for a family of i.i.d. standard Gaussian weights {&;}jcn
m The generalized random field Z is given by :
Z=LgW= Z g(pj)éje

JEN

m The finite element representation of Z is defined as the projection of Z onto
the linear span of the basis functions span{v : k € [1, n]} C L2(D).



AvJ Generalization to Riemannian manifold |

A Riemannian manifold M = (D, H) of dim. d is a composed by:
m a manifold D, i.e. a domain that "behaves" locally like R4

m a metric H, i.e. a smooth application that associates to any s € D an inner
product on the tangent space of D at the point s.

In particular, H can be seen as a family of positive definite matrices of size d
indexed by the points of D

The Laplacian (or Laplace-Beltrami operator) on M is defined by:

d d
1 ,
Apf=——=> "0 [VdetH) [H '],0;f
M det H= j:l[ 19;
S S (\/det HH*lw)
vdet H

= It is a self-adjoint positive semi-definite operator on L?(M)!
= Generalize the previous result to fields on M (Pereira and Desassis, 2018b)
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Av\, Generalization to Riemannian manifold I

Let M = (D, H) be a Riemannian manifold and let g : Ry — R,. Let Z be the
generalized random field defined by:

Z=L W= \/e(w)e; (3)
jEN
where:
® {(uj,€j) : j € N} are eigenpairs of the negative Laplacian —A ¢, forming an
orthonormal basis of L?(M)

m {&}jen is a set of i.i.d. standard Gaussian weights

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights {z} of the FE representation of (3) is:
X, =C ?g(§)C?

where:

C = Diag((Vdet Hy;,1)), G = [(V¢, Vdet HH ' Vi;)]
S=Ccl2Gc 12



Now what?

General form of the covariance matrix of finite element representations of
Gaussian fields :

X, =C 2g(s)C 2 (4)

where
m C is a diagonal matrix with strictly positive elements.

m S is a symmetric positive semi-definite matrix whose elements are inner
products of gradients of the basis functions.

= How to simulate weights with covariance matrix (4)?

Proposition : Simulation of SPDE FEM solutions

Weights z = (z1,...,2,)" with covariance matrix 3, given by (4) can be
simulated through:

z=C V2 /g(S)e
where € is a Gaussian vector with independent standard components and
V& : Ry — R satisfies (\/E)2 =g.




Weight simulation

How to compute ,/g(S)e?

A1 V&A1)
szv( )VT:\/E(S)F::V( )VTe
>\n \/E(Aﬂ)

= Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for P(X) = 3" ax X*
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Weight simulation

How to compute ,/g(S)e?

A1 V&A1)
szv< )VT:>\/§(S)5:V< )VTe
An VB

= Diagonalization + Storage : Expensive!l

Idea : use the polynomial case : for P(X) = 3" axX*

P(A1)
P(S)e = V< >VT€:ZakSkE
P(An)

— P(S)e is computable iteratively without having to diagonalize S : only involves
matrix-vector multiplications!

— Instead of computing ,/g(S)e, compute P(S)e where P is an approximation
of \/g over an interval containing {\1,...,An}

= P(S)e = \/g(S)e because P(\;) = \/g(\i) Vi



AW Chebyshev algorithm for weight simulation :Z/*

Algorithm : Chebyshev simulation (Pereira and Desassis, 2018a)

Require: An order of approximation K € N.
Output: A vector z ~ C1/2,/g(8S)e.
1. Compute an interval [a, b] containing all the eigenvalues of S

m Ex: [0, y/Trace(SST)], Gershgorin circle theorem

2. Compute an approximation (denoted P) of /g over [a, b] by truncating its
Chebyshev series at order K
— Coefficients of the decomposition in Chebyshev basis obtained by FFT

3. Compute u = P(S)e iteratively (only requires matrix to vector
multiplications)

4. Return z = C~1/2y

m Computational complexity: O(Kn,,) operations, n,, number of non-zero
entries of S

m Question : How to choose the order of approximation K to get a "satisfying"
output?



An approached output

Initial Goal Output of the algorithm
Simulate a zero-mean Gaussian vector A zero-mean Gaussian vector
with covariance matrix: zo = C—1/2PK($)5
~1/2 —1/2 . . .
s=CcY g(s)c / with covariance matrix:

B, = CVPPR(S)C/?

— When can the simulated output "pass" as the targeted one?
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An approached output

Initial Goal Output of the algorithm
Simulate a zero-mean Gaussian vector A zero-mean Gaussian vector
with covariance matrix: zo = C—1/2PK(5)5
~1/2 —1/2 . . )
s=CcY g(s)c / with covariance matrix:

¥, = CY2p2(85)CY/?
— When can the simulated output "pass" as the targeted one?

Idea: Use statistical tests on the output

= Let {z_gl), s z_gN)} be a N-sample of vectors simulated using the algorithm
and ¢ = (c1,...,¢;) T € R” be arbitrary coefficients.

m If the zsf'.) have covariance matrix X, then
S(e)={c"2{M,...,c" M}
is a Gaussian sample with variance CTEC.
= Use x? test of variance on S(c) to check that.
m Given that the actual distribution of S(c) is known (Gaussian with variance
c"X.c), we can anticipate the results without actually realising any
test!



Av\, Criterion on the approximation precision

Proposition : Statistical and approximation errors (Pereira and Desassis, 2018a)

Let Rreject(€) be the probability that a x? test with significance o on the
N-sample S(c) "fails" (i.e. null hypothesis rejected).

Then, V3 > 0, Jeg > 0 such that :

g(\) — Px(A)®
Pr(M)?

Error of the polynomial approximation

< €3 = Ve, Rreject(c) < (1 + B)a

AE[Amin v)\mnx]

€g can be numerically computed and depends on «, N and 5 > 0.

3 Sample Size N
50 100 1000 5000 10000

0,1%

1% 5,44e-03 4,80e-03 2,36e-03

5% 1,89e-02 1,51e-02 5,94e-03 2,82e-03

10% 3,00e-02 2,33e-02 8,64e-03 4,02e-03 2,88e-03
50% 1,98e-02 9,08e-03 6,46e-03
100% 2,80e-02 1,28e-02 9,10e-03

Table: Examples of ey, g values of for o = 0.05



T T T
50 100 150

Simulation on 1000x1000 grid Z = £ W with g(||w|2) = (2 + [|lw[2) "™V
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Simulation on 1000x1000 grid Z = C\/EW with g is the spectral density o the Hyperspherical

covariance.
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AW Application : Simulation on the sphere
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Simulation on a triangulated sphere of the field Z = LWV with
g(llw]l?) = (x* + 22 cos(2m) [|w][? + [|w]|*) 2
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AW Application : Simulation of non-stationary fields
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Simulation on a Riemannian manifold of Z = L, W with g(||lw]?) = (s2 + ||w||2)_1. The metric
tensor is given by :

He) = R&TRE. RE = (A7 00 (o) o))
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Conclusion

Large class of Gaussian random fields : Characterized by their spectral density
Large class of domains : manifolds and Riemannian manifolds
Explicit expression of the covariance matrix of FE weights

Efficient approximate algorithm for the computation of samples of weights :
linear complexity

Approximation error tolerance set to retrieve statistical properties
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Av\’ Likelihood-based method for model inference |

Suppose that g = gg depends on a vector of parameters 6.
The log-likelihood associated to z and 0 is given by :

1
£(z,6) = — (/v log 2 + log det (go(S)) + 27 C/?go(S) c1/2z)

It can be expensive to compute/maximize...
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Av\’ Likelihood-based method for model inference Il

m Inverse approximation

1/go(A1)
2" CY?ge(S) ' CH?z = 2" C?V < ) vic2z
1/g9(>‘n)

— zTc1/2l(s)cl/2Z
8o

= Use polynomial approximation of gle
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AvJ Likelihood-based method for model inference Il

m Inverse approximation

1/go(A1)
2" CY?ge(S) ' CH?z = 2" C?V < ) vic2z
l/ge()\,,)

_ zTc1/2l(s)cl/2Z
8o

= Use polynomial approximation of gla

m Determinant approximation

M
log det (go(S)) Z'Og(ge(Ak )~ ) _ hist(apm) log(ge(am))

where

hist(ap,) := Card {i eo,N—1]: X €lam — g, am + g]}

_ E(||1]am_;,am+;](5)e||2)
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