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Continuous Markov random �elds

P polynomial taking strictly positive value on R+.

If Z is a continuous Markov random �eld �eld,

its spectral density (Fourier transform of the covariance function) of the form
(Rozanov, 1977):

g(ω) = 1/P(‖ω‖2)

it can be seen as a solution of a stochastic partial derivative equations of the
form (Rozanov, 1977, Simpson et al., 2012):

P(−∆)1/2Z =W
where W is a Gaussian white noise, and P(−∆)1/2 is the di�erential operator
de�ned as :

P(−∆)1/2[.] = F−1
[
ω 7→

√
P(‖ω‖2)F [.](ω)

]
where F denotes the Fourier transform operator.
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Representation of Markov random �elds

Simulate Markovian �elds by solving numerically the SPDE:

P(−∆)1/2Z =W (1)

using �nite element method :

Z (s) =
∑

ziψi (s) , s ∈ D

where {ψi} are basis functions on a triangulated domain D (bounded polygonal or
manifold), and {zi} are Gaussian weights.

Proposition : Markov random �elds (Lindgren et al., 2011)

The precision matrix of the weights {zi} of the �nite element (FE) representation
of the stationary solutions of (1) is:

Qz = C 1/2P(S)C 1/2

where:

C = Diag(〈ψi , 1〉), G = [〈∇ψi ,∇ψj〉], S = C−1/2GC−1/2

⇒ For spectral densities of the form:

g(‖ω‖) =
1

P(‖ω‖2)
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Extension to generalized random �elds

Proposition : Generalized random �eld (Lang and Pottho�, 2011)

A second-order stationary, isotropic Gaussian random �eld Z with spectral density
g : R+ 7→ R+ on D ⊂ Rd can be expressed as:

Z = L√gW (2)

where L√g [.] := F−1
[
ω 7→

√
g(‖ω‖2)F [.](ω)

]
and W is a Gaussian white

noise on D.

By representing Z using a �nite element approach, we showed:

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights {zi} of the FE representation of (2) is:

Σz = C−1/2g(S)C−1/2

where: C = Diag(〈ψi , 1〉), G = [〈∇ψi ,∇ψj〉], S = C−1/2GC−1/2,

S = V

(
λ1

. . .
λn

)
V T , g(S) = V

(
g(λ1)

. . .
g(λn)

)
V T
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Theoretical framework for the proof

Same framework as in (Bolin et al., 2017).

L2(D) = Hilbert space of square-integrable function on D
The negative Laplacian −∆ is a self-adjoint positive semi-de�nite operator on
L2(D) ⇒ Diagonalizable :

Countable eigenvalues : 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µj ≤ . . . , j ∈ N
the eigenfunctions of −∆ form an orthonormal basis of L2(D)

It can be showed that then, the Gaussian white noise D can be expressed as :

W =
∑
j∈N

ξjej

for a family of i.i.d. standard Gaussian weights {ξj}j∈N
The generalized random �eld Z is given by :

Z = L√gW =
∑
j∈N

√
g(µj)ξjej

The �nite element representation of Z is de�ned as the projection of Z onto
the linear span of the basis functions span{ψk : k ∈ [[1, n]]} ⊂ L2(D).
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Generalization to Riemannian manifold I

De�nition

A Riemannian manifoldM = (D,H) of dim. d is a composed by:

a manifold D, i.e. a domain that "behaves" locally like Rd

a metric H, i.e. a smooth application that associates to any s ∈ D an inner
product on the tangent space of D at the point s.
In particular, H can be seen as a family of positive de�nite matrices of size d
indexed by the points of D

The Laplacian (or Laplace-Beltrami operator) onM is de�ned by:

∆Mf =
1√
detH

d∑
i=1

∂i

√detH d∑
j=1

[H−1]ij∂j f


=

1√
detH

div
(√

detHH−1∇f
)

⇒ It is a self-adjoint positive semi-de�nite operator on L2(M)!
⇒ Generalize the previous result to �elds onM (Pereira and Desassis, 2018b)
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Generalization to Riemannian manifold II

LetM = (D,H) be a Riemannian manifold and let g : R+ 7→ R+. Let Z be the
generalized random �eld de�ned by:

Z = L√gW :=
∑
j∈N

√
g(µj)ξjej (3)

where:

{(µj , ej) : j ∈ N} are eigenpairs of the negative Laplacian −∆M, forming an
orthonormal basis of L2(M)

{ξj}j∈N is a set of i.i.d. standard Gaussian weights

Proposition : Covariance matrix of the FE weights (Pereira and Desassis, 2018b)

The covariance matrix of the weights {zi} of the FE representation of (3) is:

Σz = C−1/2g(S)C−1/2

where:
C = Diag(〈

√
detHψi , 1〉), G = [〈∇ψi ,

√
detHH−1∇ψj〉]

S = C−1/2GC−1/2
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Now what?

General form of the covariance matrix of �nite element representations of
Gaussian �elds :

Σz = C−1/2g(S)C−1/2 (4)

where

C is a diagonal matrix with strictly positive elements.

S is a symmetric positive semi-de�nite matrix whose elements are inner
products of gradients of the basis functions.

⇒ How to simulate weights with covariance matrix (4)?

Proposition : Simulation of SPDE FEM solutions

Weights z = (z1, . . . , zn)T with covariance matrix Σz given by (4) can be
simulated through:

z = C−1/2
√
g(S)ε

where ε is a Gaussian vector with independent standard components and
√
g : R+ 7→ R satis�es

(√
g
)2

= g .
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Weight simulation

Problem

How to compute
√
g(S)ε?

S = V

(
λ1

. . .
λn

)
V T ⇒ √g(S)ε = V

(√g(λ1)

. . . √
g(λn)

)
V Tε

⇒ Diagonalization + Storage : Expensive!!

Idea : use the polynomial case : for P(X ) =
∑

akX
k
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akS
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→ P(S)ε is computable iteratively without having to diagonalize S : only involves
matrix-vector multiplications!
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(
P(λ1)

. . .
P(λn)

)
V Tε =

∑
akS

kε

→ P(S)ε is computable iteratively without having to diagonalize S : only involves
matrix-vector multiplications!

→ Instead of computing
√
g(S)ε, compute P(S)ε where P is an approximation

of
√
g over an interval containing {λ1, . . . , λn}

⇒ P(S)ε ≈ √g(S)ε because P(λi ) ≈
√
g(λi ) ∀i
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Chebyshev algorithm for weight simulation

Algorithm : Chebyshev simulation (Pereira and Desassis, 2018a)

Require: An order of approximation K ∈ N.
Output: A vector z ≈ C−1/2

√
g(S)ε.

1. Compute an interval [a, b] containing all the eigenvalues of S

Ex: [0,
√

Trace(SST )], Gershgorin circle theorem

2. Compute an approximation (denoted P) of
√
g over [a, b] by truncating its

Chebyshev series at order K
→ Coe�cients of the decomposition in Chebyshev basis obtained by FFT

3. Compute u = P(S)ε iteratively (only requires matrix to vector
multiplications)

4. Return z = C−1/2u

Computational complexity: O(Knnz) operations, nnz number of non-zero
entries of S

Question : How to choose the order of approximation K to get a "satisfying"

output?
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An approached output

Initial Goal

Simulate a zero-mean Gaussian vector
with covariance matrix:

Σ = C−1/2g(S)C−1/2

Output of the algorithm

A zero-mean Gaussian vector

zs = C−1/2PK (S)ε

with covariance matrix:

Σs = C−1/2P2
K (S)C−1/2

→ When can the simulated output "pass" as the targeted one?

Idea: Use statistical tests on the output

Let {z (1)s , ..., z
(N)
s } be a N-sample of vectors simulated using the algorithm

and c = (c1, ..., cn)T ∈ Rn be arbitrary coe�cients.

If the z
(i)
s have covariance matrix Σ, then

S(c) = {cT z (1)s , ..., cT z (N)
s }

is a Gaussian sample with variance cTΣc .
⇒ Use χ2 test of variance on S(c) to check that.

Given that the actual distribution of S(c) is known (Gaussian with variance
cTΣsc), we can anticipate the results without actually realising any

test!
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Criterion on the approximation precision

Proposition : Statistical and approximation errors (Pereira and Desassis, 2018a)

Let Rreject(c) be the probability that a χ2 test with signi�cance α on the
N-sample S(c) "fails" (i.e. null hypothesis rejected).

Then, ∀β > 0, ∃εβ > 0 such that :

max
λ∈[λmin,λmax]

∣∣∣∣g(λ)− PK (λ)2

PK (λ)2

∣∣∣∣︸ ︷︷ ︸
Error of the polynomial approximation

≤ εβ ⇒ ∀c ,Rreject(c) ≤ (1 + β)α

εβ can be numerically computed and depends on α, N and β > 0.

Table: Examples of εN,β values of for α = 0.05
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Application : Simulation of "exotic" spectral densities

Simulation on 1000x1000 grid Z = L√gW with g(‖ω‖2) =
(
κ2 + ‖ω‖2

)−(π+1)
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Application : Simulation of "exotic" spectral densities

Simulation on 1000x1000 grid Z = L√gW with g is the spectral density o the Hyperspherical

covariance.
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Application : Simulation on the sphere

Simulation on a triangulated sphere of the �eld Z = LgW with

g(‖ω‖2) =
(
κ4 + 2κ2 cos(2πθ)‖ω‖2 + ‖ω‖4

)−2
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Application : Simulation of non-stationary �elds

Simulation on a Riemannian manifold of Z = LgW with g(‖ω‖2) =
(
κ2 + ‖ω‖2

)−1
. The metric

tensor is given by :

H−1(s) = R(s)TR(s), R(s) =

(
d1(s) 0

0 d2(s)

)(
cos(θ(s)) − sin(θ(s))
sin(θ(s)) cos(θ(s))

)
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Conclusion

Large class of Gaussian random �elds : Characterized by their spectral density

Large class of domains : manifolds and Riemannian manifolds

Explicit expression of the covariance matrix of FE weights

E�cient approximate algorithm for the computation of samples of weights :
linear complexity

Approximation error tolerance set to retrieve statistical properties
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Thank you for your attention!
Questions?



Likelihood-based method for model inference I

Suppose that g = gθ depends on a vector of parameters θ.
The log-likelihood associated to z and θ is given by :

L(z ,θ) = −1
2

(
N log 2π + log det

(
gθ(S)

)
+ zTC 1/2gθ(S)−1C 1/2z

)
It can be expensive to compute/maximize...
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Likelihood-based method for model inference II

Inverse approximation

zTC 1/2gθ(S)−1C 1/2z = zTC 1/2V

(
1/gθ(λ1)

. . .
1/gθ(λn)

)
V TC 1/2z

= zTC 1/2 1

gθ
(S)C 1/2z

⇒ Use polynomial approximation of 1
gθ

Determinant approximation

log det
(
gθ(S)

)
=

n∑
k=1

log(gθ(λk)) ≈
M∑

m=0

hist(am) log(gθ(am))

where

hist(am) := Card
{
i ∈ [[0,N − 1]] : λi ∈]am −

τ

2
, am +

τ

2
]
}

= E
(
||1]am− τ2 ,am+ τ

2 ]
(S)ε||2

)
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