Motivation	Objective	Literture review	Methodology	Empirical analysis	Findings	Conclusion	Conclusion	END
0000	0	0000000	0000	000000000000000000000000000000000000000	0	0	0	0

Hedonic Housing Prices in Corsica: A hierarchical spatiotemporal approach

WORKSHOP: THEORY AND PRACTICE OF SPDE MODELS AND INLA

30 Oct. 2018

¹PhD student in Economics - University of Corsica - CNRS UMR LISA 6240, France.

Location, location, location

Corse Matin, May 17, 2012

"Une nouvelle exception corse: Les prix de l'immobilier flambent".

Corse Matin, Auguste 28, 2012

"Aussi, que vaut aujourd'hui un appartement dans la cité impériale ? Tout dépend du quartier."

"On language: location, location, location" in The New York Time, June 28, 2009

When asking a real estate professional about the three most important characteristics of a house, the likely answer will be "location, location, location".

Motivation 0●00	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Econo	mist's	words						

Can, Ayse, "Specification and estimation of hedonic housing price models", Regional Science and Urban Economics, sep 1992, 22 (3), 453-474.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Neighborhood effects

Potential spatial autocorrelation

Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Econo	mist's	words						

Can, Ayse, "Specification and estimation of hedonic housing price models", Regional Science and Urban Economics, sep 1992, 22 (3), 453-474.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Neighborhood effects
- Adjacent effect

Potential spatial autocorrelation

Motivation 00●0	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

Housing transaction data (collected over time)

Cross section? Panel? Repeated cross section? Spatiotemporal geostatistical/point-referenced data

Tools

The tools to analyze geo-referenced house transaction data are very limited. (Dubé and Legros, 2013)

- Pooling cross-sectional data
- Using a pooled OLS regression (Palmquist, 2005)
- Biased coefficients? (Clark and Linzer, 2015)

Literature on Corsican property market

Corsican property market studies

Corsican housing market has not been fully explored in literature.

- Spatial inequality, as well as on land-use pressure (Furt and Tafani, 2014; Kessler and Tafani, 2015; Prunetti et al., 2015)
- A recent research (*Giannoni et al., 2017*) focuses on the phenomenon that non-local house buyers drive out local house buyers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation	Objective	Literture review	Methodology	Empirical analysis	Findings	Conclusion	Conclusion	END
0000	•	00000000	0000	000000000000000000000000000000000000000	0	0	0	0

A twofold objective

First

We propose a model which can explicitly capture dependences in space and over time simultaneously.

Second

The proposed model is applied to study the Corsican housing market. We intend to investigate the determinants of Corsican apartment prices; in particular, we would like to highlight the impacts of time and space on apartment prices.

(日) (四) (日) (日) (日)

Motivation Objective Literture review Methodology Empirical analysis Conclusion Conclusi

A New Approach to Consumer Theory

"The good, per se, does not give utility to the consumer; it possesses characteristics, and these characteristics give rise to utility." (*Lancaster, 1966, p134*)

Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition

"A class of differentiated products is completely described by a vector of objectively measured characteristics. Observed product prices and the specific amounts of characteristics associated with each good define a set of implicit prices." (*Rosen, 1976, p34*)

Empirical representation of a house price (Malpezzi, 2008)

$$P = f(S, N, L, C, T, \beta)$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

(1)

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Deali	ng wit	h Space						

Spatial regression models (Anselin, 1988) $y = \beta W y + X \beta + u \qquad (2)$ $y = X \beta + \varepsilon \qquad (3)$ $\varepsilon = \lambda W \varepsilon + u \qquad (4)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Multilevel modeling/hierarchical models (*Raudenbush and Bryk*, 2002)

$$Level1: y = \Delta \alpha + X\beta + \varepsilon, \varepsilon \sim N(0, \sigma^2)$$
(5)

$$Level2: \alpha = Z\gamma + u, u \sim N(0, \tau^2)$$
(6)

イロト 不得 トイヨト イヨト

3

- Goodman and Thibodeau (1998)
- Goodman and Thibodeau (2003)

Special issues on applying HPM

Space and time

Housing transaction data are collected over time.

Tools

The tools to analyze geo-referenced house transaction data are very limited. (Dubé and Legros, 2013)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Spatial econometrics and the hedonic pricing model: what about the temporal dimension?

"...the STAR specification outperforms the SAR specification; the STAR specification, with a small good threshold distance value outperforms the OLS specification;" (Dubé and Legros, 2014, p355)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Drawbacks

Specification

Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag Pseudo-Panel Model with Nested Random Effects

Baltagi et al. (2015) investigate determinants of house prices in Paris over the period 1990-2003.

• Turning repeated cross-sectional data into pseudo-panel data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag Pseudo-Panel Model with Nested Random Effects

Baltagi et al. (2015) investigate determinants of house prices in Paris over the period 1990-2003.

- Turning repeated cross-sectional data into pseudo-panel data
- N-way nested error component disturbances models (*Baltagi* and Chang, 1994) with a spatial lag term

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag Pseudo-Panel Model with Nested Random Effects

Baltagi et al. (2015) investigate determinants of house prices in Paris over the period 1990-2003.

- Turning repeated cross-sectional data into pseudo-panel data
- N-way nested error component disturbances models (*Baltagi* and Chang, 1994) with a spatial lag term
- Spatial nested random effect model allowing spatial lag effects λ to vary by year.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hedonic Housing Prices in Paris: An Unbalanced Spatial Lag Pseudo-Panel Model with Nested Random Effects

$$y_{taqif} = \lambda_t \tilde{y}_{taqif} + X_{taqif} \beta + u_{taqif} \quad ;$$

$$\tilde{y}_{taqif} = \sum_{a=1}^{N} \sum_{q=1}^{Q_{ta}} \sum_{i=1}^{M_{taq}} \sum_{p=1}^{F_{taqi}} w_{taqip} y_{taqip} \quad ;$$

$$u_{taqif} = \delta_{ta} + \mu_{taq} + \nu_{taqi} + \varepsilon_{taqif} \quad (7)$$

Drawbacks

Temporal dependence

• A two-level hierarchical spatio-temporal model (Banerjee and al. 2014; Cressie and Wikle, 2011; Cameletti and al., 2013).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A two-level hierarchical spatio-temporal model (Banerjee and al. 2014; Cressie and Wikle, 2011; Cameletti and al., 2013).

٥

 $y(s_i, t) = z(s_i, t)\beta + \xi(s_i, t) + \varepsilon(s_i, t)$ (8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Methodology

Objective

٠

• A two-level hierarchical spatio-temporal model (Banerjee and al. 2014; Cressie and Wikle, 2011; Cameletti and al., 2013).

Empirical analysis

Findings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $y(s_i, t) = z(s_i, t)\beta + \xi(s_i, t) + \varepsilon(s_i, t)$ (8)

y(s_i,t) is a realization of the underlying spatio-temporal process Y (·, ·) representing house prices measured at apartment unit i = 1, · · · , d located at site s_i and time t = 1, · · · , T.

Methodology

Objective

٥

• A two-level hierarchical spatio-temporal model (Banerjee and al. 2014; Cressie and Wikle, 2011; Cameletti and al., 2013).

Empirical analysis

Findings

Conclusion

 $y(s_i, t) = z(s_i, t)\beta + \xi(s_i, t) + \varepsilon(s_i, t)$ (8)

- y(s_i,t) is a realization of the underlying spatio-temporal process Y (·, ·) representing house prices measured at apartment unit i = 1, · · · , d located at site s_i and time t = 1, · · · , T.
- $z(s_i, t) \beta$ represents all covariates referring to fixed effects

Hierarchical spatio-temporal model

• $\xi(s_i, t)$ is a so-called spatiotemporal random effects term.

Motivation Objective Literture review October Objective Literture review October Objective Objec

Hierarchical spatio-temporal model

- $\xi(s_i,t)$ is a so-called spatiotemporal random effects term.
- ۲

 $\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$ (9)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

0000

Literture review

Motivation

Objective

۲

• $\xi(s_i, t)$ is a so-called spatiotemporal random effects term.

Methodology Empirical analysis

$$\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$$
(9)

Findings Conclusion Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• *a* is the first-order autoregressive (AR1) coefficient.

Literture review

Objective

• $\xi(s_i, t)$ is a so-called spatiotemporal random effects term.

Empirical analysis

$$\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$$
(9)

Findings Conclusion Conclusion

- *a* is the first-order autoregressive (AR1) coefficient.
- $\omega(s_i, t)$ is a time-independent random field (RF).

Methodology

Literture review

Objective

۲

• $\xi\left(s_{i},t\right)$ is a so-called spatiotemporal random effects term.

Empirical analysis

$$\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$$
(9)

Findings Conclusion Conclusion

- *a* is the first-order autoregressive (AR1) coefficient.
- $\omega(s_i, t)$ is a time-independent random field (RF).

Methodology

$$\omega(s_i, t) \sim N\left(0, \sum = \sigma_{\omega}^2 \sum\right)$$
(10)

Objective

۲

۲

• $\xi\left(s_{i},t\right)$ is a so-called spatiotemporal random effects term.

Empirical analysis

$$\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$$
(9)

Findings Conclusion Conclusion

- *a* is the first-order autoregressive (AR1) coefficient.
- $\omega(s_i, t)$ is a time-independent random field (RF).

Methodology

$$\omega(s_i, t) \sim N\left(0, \sum = \sigma_{\omega}^2 \sum\right)$$
(10)

$$cov\left(\omega\left(s_{i},t\right),\omega\left(s_{j},t'\right)\right) = \begin{cases} 0 \ if \ t \neq t' \\ C_{\theta}\left(h\right) \ if \ t = t' \end{cases}$$
(11)

where $h = \|s_i - s_j\|$ is the Euclidean distance.

• $\xi\left(s_{i},t\right)$ is a so-called spatiotemporal random effects term.

Empirical analysis

$$\xi(s_i, t) = a\xi(s_i, t-1) + \omega(s_i, t)$$
(9)

Findings Conclusion Conclusion

- *a* is the first-order autoregressive (AR1) coefficient.
- $\omega(s_i, t)$ is a time-independent random field (RF).

Methodology

$$\omega(s_i, t) \sim N\left(0, \sum = \sigma_{\omega}^2 \sum\right)$$
(10)

۰

Objective

$$cov\left(\omega\left(s_{i},t\right),\omega\left(s_{j},t'\right)\right) = \begin{cases} 0 \ if \ t \neq t' \\ C_{\theta}\left(h\right) \ if \ t = t' \end{cases}$$
(11)

where $h = ||s_i - s_j||$ is the Euclidean distance.

Gaussian white noise

$$\varepsilon(s_i, t) \sim N\left(0, \sigma_{\varepsilon}^2 I_d\right)$$
 (12)

イロト 不得 トイヨト イヨト

= na<</p>

$\boldsymbol{\xi}$ represents grouped random effects

• a within group correlation structure $\omega\left(s_{i},t
ight)$

$\boldsymbol{\xi}$ represents grouped random effects

- a within group correlation structure $\omega\left(s_{i},t
 ight)$
- ${\ensuremath{\, \bullet }}$ a between group correlation structure measured by a

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

As a grouped model

$\boldsymbol{\xi}$ represents grouped random effects

- a within group correlation structure $\omega\left(s_{i},t
 ight)$
- ${\ensuremath{\, \bullet }}$ a between group correlation structure measured by a
- $\bullet~$ If $\xi_{s_i,t}$ is the $i{\rm th}$ element in the domain S in time period t, we have

$$Cov\left(\xi_{s_1,t},\xi_{s_2,t'}\right) = \sum_{ar1} \otimes \sum_{\omega}$$
 (13)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation 0000	Objective 0	Literture review	Methodology ○○○●	Empirical analysis	Findings 0	Conclusion O	Conclusion O	end o
Fittin	g the	model						

• Matérn correlation function

Motivation 0000	Objective 0	Literture review	Methodology ○○○●	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Fittin	g the	model						

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Matérn correlation function
- Gaussian Markov random field (GMRF)

Motivation 0000	Objective 0	Literture review	Methodology ○○○●	Empirical analysis	Findings O	Conclusion O	Conclusion O	END o
Fittin	g the	model						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Matérn correlation function
- Gaussian Markov random field (GMRF)
- SPDE approach

Motivation 0000	Objective O	Literture review	Methodology ○○○●	Empirical analysis	Findings O	Conclusion O	Conclusion O	END o
Fittin	g the	model						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Matérn correlation function
- Gaussian Markov random field (GMRF)
- SPDE approach
- INLA algorithm

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis ••••••••	Findings 0	Conclusion O	Conclusion O	END o
Corsic	а							

きょう (山) (山) (山) (山) (山) (山) (山)
Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The "PERVAL" database records all type of property transactions in France.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The "PERVAL" database records all type of property transactions in France.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• High-quality and high-reliability

Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The "PERVAL" database records all type of property transactions in France.

- High-quality and high-reliability
- Transaction ID

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The "PERVAL" database records all type of property transactions in France.

- High-quality and high-reliability
- Transaction ID
- Transaction date

Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The "PERVAL" database records all type of property transactions in France.

- High-quality and high-reliability
- Transaction ID
- Transaction date
- Transaction price

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o	
Data									

• The "PERVAL" database records all type of property transactions in France.

- High-quality and high-reliability
- Transaction ID
- Transaction date
- Transaction price
- Characteristics of the property

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END 0
Data								

• The used dataset are extracted from the "PERVAL" database.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The used dataset are extracted from the "PERVAL" database.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• We are interested in apartment prices.

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Data								

• The used dataset are extracted from the "PERVAL" database.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- We are interested in apartment prices.
- 7634 observations.

Motivatio 0000	n Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion 0	Conclusion 0	END o	
Data									

• The used dataset are extracted from the "PERVAL" database.

- We are interested in apartment prices.
- 7634 observations.
- Transactions from 2006 to 2017

Motivation 0000 Objective Lit

Literture review

Methodology 0000 Empirical analysis Fin

Findings (

Conclusion

END o

Independent variables	5
Variable	Description/Unit
ROOM	Number of rooms
BATH	Number of bathrooms
GAR	Number of garages
FLOOR	Number of floors
SURF	Living area (square meters)
	Dummy (=1 if the apartment pertains
	to this type and 0 otherwise)
SA	Standard apartment (referenced)
DU	Duplex apartment
ST	Studio apartment
CONSTRUCTION	Dummy (=1 if the apartment was built
PERIOD	during this period and 0 otherwise)
	Time of building 1850-1913
I LINUD A	(referenced)
PERIOD B	Time of building 1914-1947
PERIOD C	Time of building 1948-1969

Motivatio 2000	n Objective O	Litertui 00000	e review	Methodology 0000	COOPPOCOCOCOCO	Findings O	Conclusion O	Conclusion O	o O
	Variable PERIOD PERIOD PERIOD	E F G	Desc Time Time Time	of build of build of build of build	/ Unit ing 1981 / 19 ing 1992 / 20 ing 2001 / 20	991 000 010			CITS
	PERIOD	Н	Time	of build	ing 2011 / 20	020			
	DBEAD		beac	nce to ti 1 (kilome	ne nearest eters)				
	DPuHigS	Sch	Dista high	nce to tl school (l	he nearest pul kilometers)	blic			
	DHealFa	с	Dista facilit	nce to tl zy (kilom	he nearest hea eters)	alth			
	DPuHigS	Sch	Dista prima	nce to tl ary schoo	he nearest pul ol (kilometers)	blic)			

・ロト・日本・日本・日本・日本・日本

Table: Descriptive statistics for hedonic housing prices in Corsica

	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Transaction Price	149467.08	58483.01	57445.76	100000	185347.95	325431.67
log(Transaction Price)	11.84	0.39	10.96	11.55	12.13	12.69
ROOM	2.672	0.967	0	2	3	8
BATHROOM	1.053	0.259	0	1	1	3
PAK	0.795	0.712	0	0	1	8
FLOOR	1.849	1.731	-3*	1	3	12
SURF	59.315	22.191	6	43	73	197
DBEAD	3.782	7.153	0.001	1.040	3.561	52.008
DHealFac	10.421	12.099	0.051	1.636	16.461	72.244
DPuPriSch	1.347	1.698	0.0001	0.469	1.544	39.513
DPuHigSch	9.914	10.689	0.001	1.434	15.809	78.978
SVI	11.653	11.237	0.000	1.503	19.906	47.923

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Mode	ls							

• Classical linear regression model (M0)

$$\ln y(s_i, t) = z(s_i, t)\beta + \varepsilon(s_i, t); \ \varepsilon(s_i, t) \sim N(0, \sigma_{\varepsilon}^2)$$
(14)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

N C	Notivation	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
ſ	Mode	s							

• Classical linear regression model (M0)

 $\ln y(s_i, t) = z(s_i, t)\beta + \varepsilon(s_i, t); \ \varepsilon(s_i, t) \sim N(0, \sigma_{\varepsilon}^2)$ (14)

- Classical linear regression with space fixed effects (M1) $ln y(s_i, t) = z(s_i, t) \beta + 112 municipality dummies$
 - $+\varepsilon (s_i, t)$; $\varepsilon (s_i, t) \sim N \left(0, \sigma_{\varepsilon}^2\right)$ (15)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Classical linear regression model (M0)

 $\ln y(s_i,t) = z(s_i,t)\beta + \varepsilon(s_i,t); \ \varepsilon(s_i,t) \sim N(0,\sigma_{\varepsilon}^2)$ (14)

- Classical linear regression with space fixed effects (M1)
 ln y (s_i, t) = z (s_i, t) β + 112 municipality dummies +ε (s_i, t) ;
 ε (s_i, t) ~ N (0, σ_ε²) (15)
- Classical linear regression with space and time fixed effects (M2)

 $ln \ y (s_i, t) = z (s_i, t) \beta + 112 \ municipality \ dummies$ $+48 \ quarter \ dummies + \varepsilon (s_i, t) ;$ $\varepsilon (s_i, t) \sim N (0, \sigma_{\varepsilon}^2)$ (16)

Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Fixed	effect	s Models	5					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Advantages
 - Economic perspective

Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Fixed	effect	s Models						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Advantages
 - Economic perspective
 - Spatial analysis
- Disadvantages
 - Spatial autocorrelation

Motivation Objective Literture review Methodology Empirical analysis Ocococo Conclusion Conclusion END

Mixed effects Models

- Hierarchical spatial model (M3)
 - $\ln y(s_i) = z(s_i)\beta + \xi(s_i) + \varepsilon(s_i) \quad ;$
 - $\xi\left(s_{i}\right) = \omega\left(s_{i}\right) \quad ;$
 - $\varepsilon(s_i) \sim N(0, \sigma_{\varepsilon}^2)$;

$$\omega(s_i) \sim N\left(0, \sum = \sigma_{\omega}^2 \sum\right)$$
(17)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mixed effects Models

• Hierarchical spatial model (M3)

$$ln \ y (s_i) = z (s_i) \beta + \xi (s_i) + \varepsilon (s_i) \quad ;$$

$$\xi (s_i) = \omega (s_i) \quad ;$$

$$\varepsilon (s_i) \sim N (0, \sigma_{\varepsilon}^2) \quad ;$$

$$\omega (s_i) \sim N (0, \sum = \sigma_{\omega}^2 \sum) \quad (17)$$

• Hierarchical spatiotemporal model: AR1 (M4)

$$ln \ y (s_i, t) = z (s_i, t) \ \beta + \xi (s_i, t) + \varepsilon (s_i, t) \quad ;$$

$$\xi (s_i, t) = a\xi (s_i, t - 1) + \omega (s_i, t) \quad ;$$

$$\varepsilon (s_i, t) \sim N \left(0, \sigma_{\varepsilon}^2 \right) \quad ;$$

$$\omega (s_i, t) \sim N \left(0, \sum = \sigma_{\omega}^2 \sum \right) \quad (18)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Objective	Literture review	Methodology	Empirical analysis	Findings	Conclusion	Conclusion	END
0000	0	0000000	0000	000000000000000000000000000000000000000	0	0	0	0

Implementing details

• R-INLA

・ロト・日本・ヨト・ヨー うへの

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o	
Imple	Implementing details								

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- R-INLA
- Vague prior to hyperparameters

Implementing details

- R-INLA
- Vague prior to hyperparameters
- Mesh (3237 triangles)

Constrained refined Delaunay triangulation

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END o
Mode	l selec	tion						

Table: Results of DIC

Model	DIC values	Elapsed Time
CLRM	2009.37	6
CLRM+Space fixed effects	-1123.87	6
CLRM+Space and time fixed effects	-1204.59	7
Spatial hierarchical model	-3867.65	43
Spatiotemporal hierarchical model	-4460.54	17287

• M4 is deemed the best model.

Posterior estimates of covariate coefficients

		Model 4	
		0.025	0.975
	mean	quant	quant
Intercept	10.981	10.886	11.075
ROOM	0.033	0.024	0.042
BATHROOM	0.017	-0.001	0.035
GAR	0.050	0.041	0.059
FLOOR	0.019	0.016	0.022
SURF	0.010	0.010	0.011
DU	0.028	0.002	0.054
ST	-0.190	-0.209	-0.170
PERIOD B	0.000	-0.065	0.065
PERIOD C	-0.006	-0.068	0.056
PERIOD D	0.031	-0.032	0.094
PERIOD E	0.047	-0.016	0.110
PERIOD F	0.107	0.038	0.175
PERIOD G	0.219	0.154	0.284
PERIOD H	0.234	0.169	0.299
DBEAD	-0.016	-0.021	-0.011
DHealFac	-0.005	-0.008	-0.003
DPuHigSch	0.002	-0.001	0.005
DPuPriSch	0.007	-0.001	0.015

э

Motivation Objective Literture review October Objective Literture review October Objective October Objective Objecti

Posterior estimates of the variance parameters

Table: Posterior mean estimates of the variance parameters

	σ_e^2	σ_w^2	AR1 coef	Range Km
Model0	0.076			
Model1	0.050			
Model2	0.049			
Model3	0.032	0.108		1.582
		(0.090,0.129)		(1.369,1.831)
Model4	0.028	0.106	0.990	1.503
		(0.090,0.123)	(0.987,0.993)	(1.289, 1.711)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Main findings

Spatiotemporal random effects visualization

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Spatiotemporal random effects visualization

э

Eacting (LITM/Km)

Spatiotemporal random effects

$$ln \ y(s_i, t) = z(s_i, t) \ \beta + \xi(s_i, t) + \varepsilon(s_i, t)$$
(19)

$$y(s_i, t) = exp^{z(s_i, t)\beta} \times exp^{\xi(s_i, t)} \times exp^{\varepsilon(s_i, t)}$$
(20)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Findings

Locations increase the expected apartment prices up to 82.21%, as well as decrease the expected apartment prices to 55.06%.

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings •	Conclusion O	Conclusion O	END o
Findin	igs							

• Several housing structural attributes and accessibility attributes affect apartment prices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings •	Conclusion O	Conclusion O	END o
Findi	ngs							

- Several housing structural attributes and accessibility attributes affect apartment prices.
- It is clear that space and time significantly affect Corsican apartment prices. In particular, locations highly affect apartment prices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation	o Objective	Literture review	Methodology 0000	Empirical analysis	Findings •	Conclusion O	Conclusion O	END o
Find	ings							

- Several housing structural attributes and accessibility attributes affect apartment prices.
- It is clear that space and time significantly affect Corsican apartment prices. In particular, locations highly affect apartment prices.
- We can not neglect dependence in space and over time. Hence, fixed effects models are not alternatives to mixed effects models.

N 0	lotivation 000	Objective O	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion •	Conclusion O	END o
(Conclu	usion							

• Rather than ad hoc models, hierarchical spatiotemporal models and the INLA-SPDE approach work as a general framework dealing with housing transaction data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings O	Conclusion •	Conclusion O	END o
Conc	usion							

- Rather than ad hoc models, hierarchical spatiotemporal models and the INLA-SPDE approach work as a general framework dealing with housing transaction data.
- It is necessary to incorporate time and space in models when we handle housing transaction data.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation	o Objective	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion •	Conclusion O	END o
Cond	lusion							

- Rather than ad hoc models, hierarchical spatiotemporal models and the INLA-SPDE approach work as a general framework dealing with housing transaction data.
- It is necessary to incorporate time and space in models when we handle housing transaction data.
- The way to gauge time and space effects is also important. Categorical variables in fixed models do not take spatial effects fully into account.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
Motivation 0000	Objective O	Literture review	Methodology 0000	Empirical analysis 0000000000000000	Findings 0	Conclusion O	Conclusion •	END o		
Future studies										

• Priors?

Motivation 0000	Objective 0	Literture review	Methodology 0000	Empirical analysis	Findings 0	Conclusion O	Conclusion O	END ●

Thanks for your attention.

