CAN THE SPDE APPROACH REPLACE TRADITIONAL GEOSTATISTICS FOR INDUSTRIAL APPLICATIONS?

<u>N. Desassis</u>, R. Carrizo Vergara, M. Pereira D. Renard, T. Romary, X. Freulon

MINES-ParisTech - Géosciences

- The Geostatistics team of Mines-ParisTech
- Production of methodology for the society
- Production of softwares (RGeostats, Geovariances)
- Mineral ressources oriented

- Research of innovative solutions to increase productivity
- Quite conservative (changes allowed in a stable workflow)

Computational ressources

Computational ressources

GENERALLY MORE LIMITED

Uranium deposit - Arlit - Niger

1) Modeling

1) Modeling

1) Modeling - Multivariate case

1) Modeling - Multivariate case

2) Conditional simulations

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets

2) Conditional simulations

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Covariance matrix

$$\operatorname{Cov}(Z) = \Sigma = \begin{pmatrix} \Sigma_{DD} & \Sigma_{DT} \\ \Sigma_{TD} & \Sigma_{TT} \end{pmatrix}$$

2) Conditional simulations

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Covariance matrix

$$\operatorname{Cov}(Z) = \Sigma = \begin{pmatrix} \Sigma_{DD} & \Sigma_{DT} \\ \Sigma_{TD} & \Sigma_{TT} \end{pmatrix}$$

• Conditional expectation (kriging)

$$Z_T^{\star} = E[Z_T | Z_D] = \Sigma_{TD} \Sigma_{DD}^{-1} Z_D$$

2) Conditional simulations

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Covariance matrix

$$\operatorname{Cov}(Z) = \Sigma = \begin{pmatrix} \Sigma_{DD} & \Sigma_{DT} \\ \Sigma_{TD} & \Sigma_{TT} \end{pmatrix}$$

• Conditional expectation (kriging)

$$Z_T^{\star} = E[Z_T | Z_D] = \Sigma_{TD} \Sigma_{DD}^{-1} Z_D$$

• Conditional variance (covariance matrix of the errors)

$$Var[Z_T|Z_D] = \operatorname{Cov}(Z_T^{\star} - Z_T) = \Sigma_{TT} - \Sigma_{TD}\Sigma_{DD}^{-1}\Sigma_{DT}$$

- Kriging with large data sets is performed by using moving neighborhoods
- Conditional simulations are performed by using non conditional simulations and kriging of the residuals

Let

$$Z(x) = Z^{SK}(x) + Z(x) - Z^{SK}(x)$$

where

$$Z^{SK}(x) = \sum_{j=1}^{n} \lambda_j(x) Z(x_j)$$
 simple kriging
 $Z(x) - Z^{SK}(x)$ kriging residuals

 Z^{SK} and $Z-Z^{SK}$ are two independent Gaussian random functions

SELECTIVE EXPLOITATION

• Punctual grade

 $Z(x), x \in \mathcal{D}$

with mean m and covariance function ${\cal C}$

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function ${\cal C}$

• Selective Mining Unit (SMU): v

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function ${\cal C}$

• Selective Mining Unit (SMU): v

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function C

- Selective Mining Unit (SMU): v
- Regularized grade on SMUs

$$Z(v) = \frac{1}{|v|} \int_{v} Z(x) dx$$

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function C

- Selective Mining Unit (SMU): v
- Regularized grade on SMUs

$$Z(v) = \frac{1}{|v|} \int_{v} Z(x) dx$$

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function C

- Selective Mining Unit (SMU): v
- Regularized grade on SMUs

$$Z(v) = \frac{1}{|v|} \int_{v} Z(x) dx$$

• From exploration data $Z(x_1), \ldots, Z(x_n)$

SELECTIVE EXPLOITATION

• Punctual grade

$$Z(x), x \in \mathcal{D}$$

with mean m and covariance function C

- Selective Mining Unit (SMU): v
- Regularized grade on SMUs

$$Z(v) = \frac{1}{|v|} \int_{v} Z(x) dx$$

• From exploration data $Z(x_1), \ldots, Z(x_n)$

SUPPORT EFFET

What can we say about Z(v)?

SUPPORT EFFET

What can we say about Z(v)?

 ${\circ}\,$ Same mean m

SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?

- Same mean m
- Block covariance function

$$C_{\nu}(h) = \operatorname{Cov}(Z(\nu), Z(\nu+h))$$
$$= \frac{1}{|\nu|^2} \int_{\nu} \int_{\nu+h} C(x-y) dx dy$$
WHAT CAN WE SAY ABOUT Z(v)?

- Same mean m
- Block covariance function

$$C_{\nu}(h) = \operatorname{Cov}(Z(\nu), Z(\nu+h))$$
$$= \frac{1}{|\nu|^2} \int_{\nu} \int_{\nu+h} C(x-y) dx dy$$

•
$$P(Z(v) \ge z)$$
 for any cutoff z ?

WHAT CAN WE SAY ABOUT Z(v)?

- Same mean *m*
- Block covariance function

$$C_{\nu}(h) = \operatorname{Cov}(Z(\nu), Z(\nu+h))$$
$$= \frac{1}{|\nu|^2} \int_{\nu} \int_{\nu+h} C(x-y) dx dy$$

•
$$P(Z(v) \ge z)$$
 for any cutoff z ?

Grades

WHAT CAN WE SAY ABOUT Z(v)?

- Same mean *m*
- Block covariance function

$$C_{v}(h) = \operatorname{Cov}(Z(v), Z(v+h))$$
$$= \frac{1}{|v|^{2}} \int_{v} \int_{v+h} C(x-y) dx dy$$

•
$$P(Z(v) \ge z)$$
 for any cutoff z ?

Density

0.000 0.001

Punctual grades and block grades

WHAT CAN WE SAY ABOUT Z(v)?

- Same mean m
- Block covariance function

$$C_{\nu}(h) = \operatorname{Cov}(Z(\nu), Z(\nu+h))$$
$$= \frac{1}{|\nu|^2} \int_{\nu} \int_{\nu+h} C(x-y) dx dy$$

•
$$P(Z(v) \ge z)$$
 for any cutoff z ?

• Block simulations are required to generate several scenarios

Grades

- The number of SMU can be large (e.g 1 million)
- Conditional simulations by using discretization of the blocks can be time consuming
- Solution : use of a change of support model to describe the multivariate distribution of the points and the blocks and perform conditional simulations of the regularized variable without discretization
- Several hours for 100 simulations with around 100 000 observations

HANDLING COVARIANCE NON-STATIONARITIES

HANDLING COVARIANCE NON-STATIONARITIES

Current solutions

- Deform the space
- Cut the domain into several sub-domains in which stationarity is acceptable

More complex environments

× × 1 1 44 1 XX

More complex environments

More complex environments

LINDGREN ET AL. (2011)

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Covariance matrix

$$\operatorname{Cov}(Z) = \Sigma = \begin{pmatrix} \Sigma_{DD} & \Sigma_{DT} \\ \Sigma_{TD} & \Sigma_{TT} \end{pmatrix}$$

• Conditional expectation (kriging)

$$Z_T^{\star} = \Sigma_{TD} \Sigma_{DD}^{-1} Z_D$$

$$\operatorname{Cov}(Z_T^{\star}-Z_T)=\Sigma_{TT}-\Sigma_{TD}\Sigma_{DD}^{-1}\Sigma_{DT}$$

LINDGREN ET AL. (2011)

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Precision matrix

$$Q = \Sigma^{-1} = \left(\begin{array}{cc} Q_{DD} & Q_{DT} \\ Q_{TD} & Q_{TT} \end{array}\right)$$

• Conditional expectation (kriging)

$$Z_T^{\star} = \Sigma_{TD} \Sigma_{DD}^{-1} Z_D$$

$$\operatorname{Cov}(Z_T^{\star}-Z_T)=\Sigma_{TT}-\Sigma_{TD}\Sigma_{DD}^{-1}\Sigma_{DT}$$

LINDGREN ET AL. (2011)

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Precision matrix

$$Q = \Sigma^{-1} = \left(\begin{array}{cc} Q_{DD} & Q_{DT} \\ Q_{TD} & Q_{TT} \end{array}\right)$$

• Conditional expectation (kriging)

$$Z_T^{\star} = -Q_{TT}^{-1}Q_{TD}Z_D$$

$$\operatorname{Cov}(Z_T^{\star}-Z_T)=\Sigma_{TT}-\Sigma_{TD}\Sigma_{DD}^{-1}\Sigma_{DT}$$

LINDGREN ET AL. (2011)

• Let

$$Z = \left(\begin{array}{c} Z_D \\ Z_T \end{array}\right)$$

where Z_D is the vector of data and Z_T the vector of targets • Precision matrix

$$Q = \Sigma^{-1} = \left(\begin{array}{cc} Q_{DD} & Q_{DT} \\ Q_{TD} & Q_{TT} \end{array}\right)$$

• Conditional expectation (kriging)

$$Z_T^{\star} = -Q_{TT}^{-1}Q_{TD}Z_D$$

$$\operatorname{Cov}(Z_T^{\star} - Z_T) = Q_{TT}^{-1}$$

Observations

Kriging with SPDE

Kriging with covariance function

Comparison of times

Comparison of times

VARYING ANISOTROPY

Varying anisotropy

VARYING ANISOTROPY

Simulation and sampling

VARYING ANISOTROPY

Simulation and sampling

GARTNER HYPE CYCLE

- Outperform the time performances of "old geostatistics" in 3D
- Handle one million of targets
- OK to work with Matérn only (or Markovian approximations)
- Handle nested models (nugget effect + 2 basic structures)
- Handle several variables (co-kriging with linear model of coregionalisation)
- Develop block simulation
- Handle varying anisotropies

GARTNER HYPE CYCLE

- The system size quickly increases
- The sparsity of the precision matrix decreases
- $\bullet\,$ The Cholesky factorization of Q_{TT} is not possible anymore for a system size greater than 200 000

FINITE ELEMENTS APPROXIMATION

• For kriging, we can use a coarse meshing to reduce the system size and interpolate the result inside the elements

$$Z(s) = \sum_{i=1}^N z_i \psi_i(s)$$

FINITE ELEMENTS APPROXIMATION

• For kriging, we can use a coarse meshing to reduce the system size and interpolate the result inside the elements

$$Z(s) = \sum_{i=1}^{N} z_i \psi_i(s)$$

• But simulations have to be performed on the final target grid in order to reproduce the local variability

- Work with several meshings : one for the simulation (fine) and one for the kriging (coarse)
- Find an efficient algorithm to perform non conditional simulation on the fine meshing (Pereira and Desassis, 2018)
- Perform the kriging of the residuals on the coarse mesh and interpolate linearly the result on the fine mesh

NESTED MODELS

Measurement error

Model

$$\tilde{Z}(s_i) = Z(s_i) + \varepsilon(s_i)$$

with

- Z solution of a SPDE
- $\varepsilon(\mathbf{s}_i)$ is a measurement error with variance σ_i^2
- The errors are uncorrelated

We want to predict Z_T knowing the observations \tilde{Z}_D

- Problem: the precision matrix of (Z_T, \tilde{Z}_D) is not sparse
- Solution: consider the larger vector $(Z_{T\cup D}, \tilde{Z}_D)$
- Its precision matrix is sparse
- The size of the system to solve is $N_T + N_D$
- Can we avoid to put vertices at data locations?

NESTED MODELS

Measurement error

• Finite element formulation

$$Z(s) = \sum_{i=1}^N z_i \psi_i(s)$$

Z = (z₁,..., z_N) has covariance matrix Σ and precision matrix Q
ε = (ε(s₁),...,ε(s_n)) has diagonal variance matrix E (with ith term σ_i²)
The data model is

$$\tilde{Z}_D = A^T Z + \varepsilon$$

where A is the $N \times n$ sparse matrix with elements $a_{ij} = \psi_i(s_j)$

COVARIANCE AND PRECISION MATRICES

The covariance matrix of (Z, \tilde{Z}_D) is

$$ilde{\Sigma} = \left(egin{array}{cc} \Sigma & \Sigma A \\ A^T \Sigma & A^T \Sigma A + E \end{array}
ight)$$

The covariance matrix of (Z, \tilde{Z}_D) is

$$ilde{\Sigma} = \left(egin{array}{cc} \Sigma & \Sigma A \\ A^T \Sigma & A^T \Sigma A + E \end{array}
ight)$$

And the precision matrix is

$$\tilde{Q} = \left(\begin{array}{cc} Q + AE^{-1}A^T & -AE^{-1} \\ -E^{-1}A^T & E^{-1} \end{array}\right)$$

The covariance matrix of (Z, \tilde{Z}_D) is

$$ilde{\Sigma} = \left(egin{array}{cc} \Sigma & \Sigma A \\ A^T \Sigma & A^T \Sigma A + E \end{array}
ight)$$

And the precision matrix is

$$\tilde{Q} = \left(\begin{array}{cc} Q + AE^{-1}A^T & -AE^{-1} \\ -E^{-1}A^T & E^{-1} \end{array}\right)$$

Therefore, the kriging of Z is given by

$$Z^{\star} = (Q + AE^{-1}A^{T})^{-1}AE^{-1}\tilde{Z}_{D}$$

DOES IT WORK?

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

100 observations, 50×50 grid
Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

Classical Kriging

100 observations, 50×50 grid

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

SPDE Kriging (with 1% nugget)

100 observations, 50×50 grid

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

SPDE Kriging (with 1% nugget)

Classical kriging

100 observations, 50×50 grid

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

SPDE Kriging (with 1% nugget)

Classical kriging

100 observations, 33×33 grid

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 40)

SPDE Kriging (with 1% nugget)

Classical kriging

100 observations, 25×25 grid

Comparison with kriging (Matérn with smoothness $\nu = 1$ and range = 5)

Classical Kriging

100 observations, 33×33 grid

Comparison with kriging (Matérn with smoothness $\nu = 1$ and range = 5)

SPDE Kriging (with 1% nugget)

100 observations, 33×33 grid

Comparison with kriging (Matérn with smoothness $\nu = 1$ and range = 5)

2 80 80 40 60 SPDE kriging 60 0 40 20 Š 0 c ٥ 20 40 60 80 100

SPDE Kriging (with 1% nugget)

100 observations, 33×33 grid

Classical kriging

Comparison with Kriging (Matérn with smoothness $\nu = 1$ and range = 5)

100 observations, 33×33 grid

- When the range (or ν) is large, the meshing can be coarse
- When the range is small, it is useless to put vertices far from data locations (or we can patch the vertices with the mean)

NESTED MODELS

$$Z(s) = \sum_{k=1}^{K} Z_k(s)$$

where the Z_k are independent random fields with covariance C_k

- Z has covariance $C = \sum_{k=1}^{K} C_k$
- \bullet We don't know how to approximate Z with a Markovian Random Field

NESTED MODELS

$$Z(s) = \sum_{k=1}^{K} Z_k(s)$$

where the Z_k are independent random fields with covariance C_k

- Z has covariance $C = \sum_{k=1}^{K} C_k$
- \bullet We don't know how to approximate Z with a Markovian Random Field

Cameletti et al. (2013)

$$Z(s) = \sum_{k=1}^{K} \sum_{i=1}^{N_k} z_i^{(k)} \psi_i^{(k)}(s)$$

Model

$$\tilde{Z}(s_i) = \sum_{k=1}^{K} Z_k(s_i) + \varepsilon(s_i)$$

with

- Z_k solution of a SPDE
- $\varepsilon(\mathbf{s}_i)$ is a measurement error with variance σ_i^2
- The errors are uncorrelated
- $Z_k = (z_1^{(k)}, \dots, z_N^{(k)})$ has covariance matrix Σ_k and precision matrix Q_k
- $\varepsilon = (\varepsilon(s_1), \dots, \varepsilon(s_n))$ has diagonal variance matrix E (with i^{th} term σ_i^2)
- The data model is

$$\tilde{Z}_D = A_k^T Z_k + \varepsilon$$

where A_k is the $N_k \times n$ sparse matrix with elements $a_{ij} = \psi_i^{(k)}(s_j)$

COVARIANCE AND PRECISION MATRICES OF $(Z_1, \ldots, Z_K, \tilde{Z}_D)$

$$\tilde{\Sigma} = \begin{pmatrix} \Sigma_1 & 0 & \dots & 0 & \Sigma_1 A_1 \\ 0 & \Sigma_2 & \dots & 0 & \Sigma_2 A_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \Sigma_K & \Sigma_K A_K \\ A_1^T \Sigma_1 & A_2^T \Sigma_2 & \dots & A_K^T \Sigma_K & \sum_{k=1}^K A_k^T \Sigma_k A_k + E \end{pmatrix}$$

COVARIANCE AND PRECISION MATRICES OF $(Z_1, \ldots, Z_K, \tilde{Z}_D)$

$$\tilde{Q} = \begin{pmatrix} Q_1 + A_1 E^{-1} A_1^T & A_1 E^{-1} A_2^T & \dots & A_1 E^{-1} A_K^T & -A_1 E^{-1} \\ A_2 E^{-1} A_1^T & Q_2 + A_2 E^{-1} A_2^T & \dots & A_2 E^{-1} A_K^T & -A_2 E^{-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_K E^{-1} A_1^T & A_K E^{-1} A_2^T & \dots & Q_K + A_K E^{-1} A_K^T & -A_K E^{-1} \\ -E^{-1} A_1^T & -E^{-1} A_2^T & \dots & -E^{-1} A_K^T & E^{-1} \end{pmatrix}$$

COVARIANCE AND PRECISION MATRICES OF $(Z_1, \ldots, Z_K, \tilde{Z}_D)$

$$\tilde{Q} = \begin{pmatrix} Q_1 + A_1 E^{-1} A_1^T & A_1 E^{-1} A_2^T & \dots & A_1 E^{-1} A_K^T & -A_1 E^{-1} \\ A_2 E^{-1} A_1^T & Q_2 + A_2 E^{-1} A_2^T & \dots & A_2 E^{-1} A_K^T & -A_2 E^{-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_K E^{-1} A_1^T & A_K E^{-1} A_2^T & \dots & Q_K + A_K E^{-1} A_K^T & -A_K E^{-1} \\ -E^{-1} A_1^T & -E^{-1} A_2^T & \dots & -E^{-1} A_K^T & E^{-1} \end{pmatrix}$$

• Use block Gauss-Seidel algorithm to solve the system

• Each subsystem is solved from the Cholesky factorization of

$$Q + A_k E^{-1} A_k^T$$

• The algorithm converges in a few iterations

DIRECT BLOCK SIMULATION (STATIONARY CASE)

The Discret Gaussian Model

We consider v_1,\ldots,v_N a partition of the domain D where the sets v_i are equal up to a translation

HYPOTHESIS AND NOTATIONS

- $\bullet~x$ is a fixed location and \underline{x} is a uniform location within a block v
- $Z(\underline{x}) = \varphi(Y(\underline{x}))$ where $Y(\underline{x})$ is a standard Gaussian variable
- C_Y is the covariance of the stationary random field $\{Y(x), x \in D\}$
- $Z(v) = \varphi_v(Y_v)$ where Y_v is a standard Gaussian variable

DIRECT BLOCK SIMULATION (STATIONARY CASE)

The Discret Gaussian Model

We consider v_1,\ldots,v_N a partition of the domain D where the sets v_i are equal up to a translation

HYPOTHESIS AND NOTATIONS

- $\bullet~x$ is a fixed location and \underline{x} is a uniform location within a block v
- $Z(\underline{x}) = \varphi(Y(\underline{x}))$ where $Y(\underline{x})$ is a standard Gaussian variable
- C_Y is the covariance of the stationary random field $\{Y(x), x \in D\}$
- $Z(v) = \varphi_v(Y_v)$ where Y_v is a standard Gaussian variable
- If the observation locations $\underline{x_1}, \ldots, \underline{x_n}$ are uniform within their block and mutually independent then $(Y(\underline{x_1}), \ldots, Y(\underline{x_n}), Y_{v_1}, \ldots, Y_{v_N})$ is a Gaussian vector

DIRECT BLOCK SIMULATION (STATIONARY CASE)

The Discret Gaussian Model

We consider v_1,\ldots,v_N a partition of the domain D where the sets v_i are equal up to a translation

Hypothesis and notations

- $\bullet~x$ is a fixed location and \underline{x} is a uniform location within a block v
- $Z(\underline{x}) = \varphi(Y(\underline{x}))$ where $Y(\underline{x})$ is a standard Gaussian variable
- C_Y is the covariance of the stationary random field $\{Y(x), x \in D\}$
- $Z(v) = \varphi_v(Y_v)$ where Y_v is a standard Gaussian variable
- If the observation locations $\underline{x_1}, \ldots, \underline{x_n}$ are uniform within their block and mutually independent then $(Y(\underline{x_1}), \ldots, Y(\underline{x_n}), Y_{v_1}, \ldots, Y_{v_N})$ is a Gaussian vector
- $Y(\underline{x_i})$ and $Y(\underline{x_j})$ are independent conditionally to $Y_{\nu(i)}$ and $Y_{\nu(j)}$ the Gaussian values of the blocks in which $\underline{x_i}$ and x_j belongs

CONSEQUENCES (EMERY, 2007)

• The correlation r between $Y(\underline{x_i})$ and $Y_{v(i)}$ is deduced from the covariance function of the punctual Gaussian Y:

$$r^{2} = \frac{1}{|v|^{2}} \int_{v} \int_{v} C_{Y}(x-y) dx dy$$

• The covariance $C_{\nu}(h)$ between Y_{ν} and $Y_{\nu+h}$ is given by

$$C_{v}(h) = \operatorname{Cov}(Y_{v}, Y_{v+h}) = \frac{1}{r^{2}|v|^{2}} \int_{v} \int_{v+h} C_{Y}(x-y) dx dy$$

CONSEQUENCES (EMERY, 2007)

• The correlation r between $Y(\underline{x_i})$ and $Y_{v(i)}$ is deduced from the covariance function of the punctual Gaussian Y:

$$r^{2} = \frac{1}{|v|^{2}} \int_{v} \int_{v} C_{Y}(x-y) dx dy$$

• The covariance $C_{\nu}(h)$ between Y_{ν} and $Y_{\nu+h}$ is given by

$$C_{v}(h) = \operatorname{Cov}(Y_{v}, Y_{v+h}) = \frac{1}{r^{2}|v|^{2}} \int_{v} \int_{v+h} C_{Y}(x-y) dx dy$$

•
$$\operatorname{Cov}(Y(\underline{x_i}), Y_v) = r \operatorname{Cov}(Y_{v(i)}, Y_v)$$

• $\operatorname{Cov}(Y(\underline{x_i}), Y(\underline{x_j})) = r^2 \operatorname{Cov}(Y_{v(i)}, Y_{v(j)})$

COVARIANCE MATRIX OF $(Y_{v_1}, \ldots, Y_{v_N}, Y(\underline{x_1}), \ldots, Y(\underline{x_n}))$

$$\left(\begin{array}{cc} \Sigma_{v} & r\Sigma_{v}A^{T} \\ rA\Sigma_{v} & r^{2}A\Sigma_{v}A^{T} + (1-r^{2})I \end{array}\right)$$

where

- Σ_{ν} is built from the block covariance C_{ν}
- A is the $n \times N$ matrix defined by $a_{ij} = \mathbf{1}_{x_i \in v_i}$

PRECISION MATRIX OF $(Y_{v_1}, \ldots, Y_{v_N}, Y(\underline{x_1}), \ldots, Y(\underline{x_n}))$

$$\frac{1}{1-r^2} \left(\begin{array}{cc} (1-r^2)Q_v + r^2A^TA & -rA^T \\ -rA & I \end{array} \right)$$

where

- Q_{ν} is the precision matrix built from SPDE
- A is the $n \times N$ matrix defined by $a_{ij} = \mathbf{1}_{x_i \in v_j}$

- The SPDE approach should be able to replace traditional geostatistics
- Direct Block Simulation for non-stationary models has to be developped
- Inference for varying parameters should be developped
- It should allow to integrate geological knowledge

- M Cameletti, F Lindgren, D Simpson, H Rue (2013) Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Advances in Statistical Analysis 97 (2), 109-131
- X Emery (2007) On some consistency conditions for geostatistical change-of-support models. Mathematical geology
- F Lindgren, H Rue, J Lindström (2011) An explicit link between Gaussian Fields and Gaussian Markov random fields: the SPDE approach. JRSS B 73 (4)
- M Pereira and N Desassis (2018) Efficient simulation of Gaussian Markov random fields by Chebyshev polynomial approximation. arXiv preprint 1805.07423