
RESSTE workshop - Avignon - November 2018

Can the SPDE approach replace traditional
Geostatistics for industrial applications?

N. Desassis, R. Carrizo Vergara, M. Pereira
D. Renard, T. Romary, X. Freulon

MINES-ParisTech - Géosciences
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Context

The Geostatistics team of Mines-ParisTech

Production of methodology for the society

Production of softwares (RGeostats, Geovariances)

Mineral ressources oriented
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Constraints imposed by the industry

Research of innovative solutions to increase productivity

Quite conservative (changes allowed in a stable workflow)
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Computational ressources
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Computational ressources
Generally more limited

Uranium deposit - Arlit - Niger
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Workflow
1) Modeling
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Workflow
1) Modeling - Multivariate case
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Workflow
2) Conditional simulations

RESSTE - Avignon 8 / 39

Let

Z =

(
ZD

ZT

)
where ZD is the vector of data and ZT the vector of targets

Covariance matrix

Cov(Z ) = Σ =

(
ΣDD ΣDT

ΣTD ΣTT

)

Conditional expectation (kriging)

Z?
T = E [ZT |ZD ] =

Conditional variance (covariance matrix of the errors)

Var [ZT |ZD ] = Cov(Z?
T − ZT ) = ΣTT − ΣTDΣ−1DDΣDT
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Handling large data sets and large grid

Kriging with large data sets is performed by using moving neighborhoods

Conditional simulations are performed by using non conditional
simulations and kriging of the residuals
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Principle

Let
Z (x) = ZSK (x) + Z (x)− ZSK (x)

where

ZSK (x) =
∑n

j=1 λj(x)Z (xj) simple kriging

Z (x)− ZSK (x) kriging residuals

ZSK and Z − ZSK are two independent Gaussian random functions
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Context
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Selective exploitation
Punctual grade

Z (x), x ∈ D

with mean m and covariance function C

Selective Mining Unit (SMU): v

Regularized grade on SMUs

Z (v) =
1

|v |

∫
v

Z (x)dx

From exploration data Z (x1), . . . ,Z (xn)
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Support effet
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What can we say about Z (v)?

Same mean m

Block covariance function

Cv (h) = Cov(Z (v),Z (v + h))

=
1

|v |2

∫
v

∫
v+h

C (x − y)dxdy

P(Z (v) ≥ z) for any cutoff z?

Block simulations are required to
generate several scenarios



Direct block simulations

The number of SMU can be large (e.g 1 million)

Conditional simulations by using discretization of the blocks can be time
consuming

Solution : use of a change of support model to describe the multivariate
distribution of the points and the blocks and perform conditional
simulations of the regularized variable without discretization

Several hours for 100 simulations with around 100 000 observations
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Handling covariance non-stationarities

Current solutions

Deform the space

Cut the domain into several sub-domains in which stationarity is
acceptable
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More complex environments

RESSTE - Avignon 16 / 39



More complex environments

RESSTE - Avignon 16 / 39



More complex environments

RESSTE - Avignon 16 / 39



SPDE
Lindgren et al. (2011)
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Comparison of times
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Varying anisotropy
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Gartner Hype Cycle
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Expectations

Outperform the time performances of “old geostatistics” in 3D

Handle one million of targets

OK to work with Matérn only (or Markovian approximations)

Handle nested models (nugget effect + 2 basic structures)

Handle several variables (co-kriging with linear model of coregionalisation)

Develop block simulation

Handle varying anisotropies
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Gartner Hype Cycle
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Issues with the 3D

The system size quickly increases

The sparsity of the precision matrix decreases

The Cholesky factorization of QTT is not possible anymore for a system
size greater than 200 000
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Finite elements approximation

Cameletti et al. (2013)

For kriging, we can use a coarse meshing to reduce the system size and
interpolate the result inside the elements

Z (s) =
N∑
i=1

ziψi (s)

But simulations have to be performed on the final target grid in order to
reproduce the local variability
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Separate the problems

Work with several meshings : one for the simulation (fine) and one for the
kriging (coarse)

Find an efficient algorithm to perform non conditional simulation on the
fine meshing (Pereira and Desassis, 2018)

Perform the kriging of the residuals on the coarse mesh and interpolate
linearly the result on the fine mesh
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Nested Models
Measurement error

Model

Z̃ (si ) = Z (si ) + ε(si )

with

Z solution of a SPDE

ε(si ) is a measurement error with variance σ2
i

The errors are uncorrelated

We want to predict ZT knowing the observations Z̃D

Problem: the precision matrix of (ZT , Z̃D) is not sparse

Solution: consider the larger vector (ZT∪D , Z̃D)

Its precision matrix is sparse

The size of the system to solve is NT + ND

Can we avoid to put vertices at data locations?
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Nested Models
Measurement error

Finite element formulation

Z (s) =
N∑
i=1

ziψi (s)

Z = (z1, . . . , zN) has covariance matrix Σ and precision matrix Q

ε = (ε(s1), . . . , ε(sn)) has diagonal variance matrix E (with i th term σ2
i )

The data model is
Z̃D = ATZ + ε

where A is the N × n sparse matrix with elements aij = ψi (sj)
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Covariance and precision matrices

The covariance matrix of (Z , Z̃D) is

Σ̃ =

(
Σ ΣA

ATΣ ATΣA + E

)

And the precision matrix is

Q̃ =

(
Q + AE−1AT −AE−1
−E−1AT E−1

)
Therefore, the kriging of Z is given by

Z? = (Q + AE−1AT )−1AE−1Z̃D
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Does it work?
Comparison with kriging (Matérn with smoothness ν = 1 and range = 40)
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Does it work?
Comparison with kriging (Matérn with smoothness ν = 1 and range = 5)
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First conclusions

When the range (or ν) is large, the meshing can be coarse

When the range is small, it is useless to put vertices far from data
locations (or we can patch the vertices with the mean)
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Nested Models

Z (s) =
K∑

k=1

Zk(s)

where the Zk are independant random fields with covariance Ck

Z has covariance C =
∑K

k=1 Ck

We don’t know how to approximate Z with a Markovian Random Field

Cameletti et al. (2013)

Z (s) =
K∑

k=1

Nk∑
i=1

z
(k)
i ψ

(k)
i (s)
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Model

Z̃ (si ) =
K∑

k=1

Zk(si ) + ε(si )

with

Zk solution of a SPDE

ε(si ) is a measurement error with variance σ2
i

The errors are uncorrelated

Zk = (z
(k)
1 , . . . , z

(k)
N ) has covariance matrix Σk and precision matrix Qk

ε = (ε(s1), . . . , ε(sn)) has diagonal variance matrix E (with i th term σ2
i )

The data model is
Z̃D = AT

k Zk + ε

where Ak is the Nk × n sparse matrix with elements aij = ψ
(k)
i (sj)
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Covariance and precision matrices

of (Z1, . . . ,ZK , Z̃D)

Σ̃ =


Σ1 0 . . . 0 Σ1A1

0 Σ2 . . . 0 Σ2A2

...
...

. . .
...

...
0 0 . . . ΣK ΣKAK

AT
1 Σ1 AT

2 Σ2 . . . AT
KΣK

∑K
k=1 A

T
k ΣkAk + E



Use block Gauss-Seidel algorithm to solve the system

Each subsystem is solved from the Cholesky factorization of

Q + AkE
−1AT

k

The algorithm converges in a few iterations
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Covariance and precision matrices
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Q̃ =


Q1 + A1E

−1AT
1 A1E

−1AT
2 . . . A1E

−1AT
K −A1E

−1

A2E
−1AT

1 Q2 + A2E
−1AT

2 . . . A2E
−1AT

K −A2E
−1

...
...

. . .
...

...
AKE

−1AT
1 AKE

−1AT
2 . . . QK + AKE

−1AT
K −AKE

−1

−E−1AT
1 −E−1AT

2 . . . −E−1AT
K E−1


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Covariance and precision matrices

of (Z1, . . . ,ZK , Z̃D)

Q̃ =


Q1 + A1E

−1AT
1 A1E

−1AT
2 . . . A1E

−1AT
K −A1E

−1

A2E
−1AT

1 Q2 + A2E
−1AT

2 . . . A2E
−1AT

K −A2E
−1

...
...

. . .
...

...
AKE

−1AT
1 AKE

−1AT
2 . . . QK + AKE

−1AT
K −AKE

−1

−E−1AT
1 −E−1AT

2 . . . −E−1AT
K E−1


Use block Gauss-Seidel algorithm to solve the system

Each subsystem is solved from the Cholesky factorization of

Q + AkE
−1AT

k

The algorithm converges in a few iterations
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Direct Block Simulation (stationary case)
The Discret Gaussian Model

We consider v1, . . . , vN a partition of the domain D where the sets vi are equal
up to a translation

Hypothesis and notations
x is a fixed location and x is a uniform location within a block v

Z (x) = ϕ(Y (x)) where Y (x) is a standard Gaussian variable

CY is the covariance of the stationary random field {Y (x), x ∈ D}
Z (v) = ϕv (Yv ) where Yv is a standard Gaussian variable

If the observation locations x1, . . . , xn are uniform within their block and
mutually independant then (Y (x1), . . . ,Y (xn),Yv1 , . . . ,YvN ) is a Gaussian
vector

Y (xi ) and Y (xj) are independant conditionally to Yv(i) and Yv(j) the
Gaussian values of the blocks in which xi and xj belongs
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Consequences (Emery, 2007)

The correlation r between Y (xi ) and Yv(i) is deduced from the covariance
function of the punctual Gaussian Y :

r2 =
1

|v |2

∫
v

∫
v

CY (x − y)dxdy

The covariance Cv (h) between Yv and Yv+h is given by

Cv (h) = Cov(Yv ,Yv+h) =
1

r2|v |2

∫
v

∫
v+h

CY (x − y)dxdy

Cov(Y (xi ),Yv ) = rCov(Yv(i),Yv )

Cov(Y (xi ),Y (xj)) = r2Cov(Yv(i),Yv(j))

v1

xi xj

Cov(Yv1 ,Yv2)

r r

v2

xk

r
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Covariance matrix of
(Yv1, . . . ,YvN ,Y (x1), . . . ,Y (xn))

(
Σv rΣvA

T

rAΣv r2AΣvA
T + (1− r2)I

)
where

Σv is built from the block covariance Cv

A is the n × N matrix defined by aij = 11xi∈vj
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Precision matrix of
(Yv1, . . . ,YvN ,Y (x1), . . . ,Y (xn))

1

1− r2

(
(1− r2)Qv + r2ATA −rAT

−rA I

)
where

Qv is the precision matrix built from SPDE

A is the n × N matrix defined by aij = 11xi∈vj
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Conclusions

The SPDE approach should be able to replace traditional geostatistics

Direct Block Simulation for non-stationary models has to be developped

Inference for varying parameters should be developped

It should allow to integrate geological knowledge
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