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CONTEXT

The Geostatistics team of Mines-ParisTech

Production of methodology for the society

e Production of softwares (RGeostats, Geovariances)

Mineral ressources oriented

RESSTE - AVIGNON 2 /39



CONSTRAINTS IMPOSED BY THE INDUSTRY

@ Research of innovative solutions to increase productivity

e Quite conservative (changes allowed in a stable workflow)
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COMPUTATIONAL RESSOURCES
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COMPUTATIONAL RESSOURCES

GENERALLY MORE LIMITED
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WORKFLOW

1) MODELING
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WORKFLOW

1) MODELING - MULTIVARIATE CASE
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WORKFLOW
2) CONDITIONAL SIMULATIONS
o Let

-(%)

where Zp is the vector of data and Z7 the vector of targets
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where Zp is the vector of data and Z7 the vector of targets
o Covariance matrix
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o Conditional expectation (kriging)

Zx = E[Z7|Zp] = T10X 552
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WORKFLOW
2) CONDITIONAL SIMULATIONS
o Let

-(%)

where Zp is the vector of data and Z7 the vector of targets
o Covariance matrix

_«_{( Xpp XpT
Cov(Z)=%X = ( S Tor )

o Conditional expectation (kriging)
Z5 = E[Z7|Zp] = Z10Xpp 2

e Conditional variance (covariance matrix of the errors)

Var[Z7|Zp] = Cov(Z5 — Z7) = L17 — Z10E ppToT
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HANDLING LARGE DATA SETS AND LARGE GRID

o Kriging with large data sets is performed by using moving neighborhoods

o Conditional simulations are performed by using non conditional
simulations and kriging of the residuals
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PRINCIPLE

Let
Z(x) = Z°(x) + Z(x) — Z°"(x)
where
Z3K(x) = 327 M(x)Z(x) simple kriging
Z(x) — Z°K(x) kriging residuals

Z°K and Z — Z°K are two independent Gaussian random functions
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CONTEXT

SELECTIVE EXPLOITATION
o Punctual grade

Z(x),x €D

with mean m and covariance function C N
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CONTEXT

SELECTIVE EXPLOITATION
o Punctual grade

Z(x),x €D

with mean m and covariance function C
o Selective Mining Unit (SMU): v
o Regularized grade on SMUs

Z(v) = |‘1/|/Z(X)dx

e From exploration data Z(xy),. .., Z(x,)
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CONTEXT

SELECTIVE EXPLOITATION
o Punctual grade

Z(x),x €D

with mean m and covariance function C
o Selective Mining Unit (SMU): v
o Regularized grade on SMUs

Z(v) = ﬁ/Z(X)dx

e From exploration data Z(xy),. .., Z(x,)
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SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?

RESSTE - AVIGNON 13 / 39



SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?

e Same mean m

RESSTE - AVIGNON 13 / 39



SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?
e Same mean m
@ Block covariance function
C,(h) = Cov(Z(v),Z(v + h))

1
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SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?
e Same mean m
@ Block covariance function
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SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?
e Same mean m
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SUPPORT EFFET

WHAT CAN WE SAY ABOUT Z(v)?
e Same mean m

Py BlOCk covariance function Punctual grades and block grades

C.(h) = Cov(Z(v), Z(v + h))
1
= |V|2/\//v+h C(x — y)dxdy

e P(Z(v) > z) for any cutoff z?
@ Block simulations are required to
generate several scenarios
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DIRECT BLOCK SIMULATIONS

e The number of SMU can be large (e.g 1 million)

e Conditional simulations by using discretization of the blocks can be time
consuming

@ Solution : use of a change of support model to describe the multivariate
distribution of the points and the blocks and perform conditional
simulations of the regularized variable without discretization

@ Several hours for 100 simulations with around 100 000 observations

RESSTE - AVIGNON 14 / 39



HANDLING COVARIANCE NON-STATIONARITIES

15 / 39



HANDLING COVARIANCE NON-STATIONARITIES

Current solutions

@ Deform the space

e Cut the domain into several sub-domains in which stationarity is
acceptable

15 / 39



MORE COMPLEX ENVIRONMENTS
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SPDE

LINDGREN ET AL. (2011)

o Let

-(%)

where Zp is the vector of data and Z7 the vector of targets
o Covariance matrix

_«_( Xpp XpT
Cov(Z) =% = ( Sy Tor )

e Conditional expectation (kriging)
Zr =YX ppZp
o Conditional variance (covariance matrix of the errors)

COV(Z;— - ZT) = ZTT — ZTDZBE)ZDT
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where Zp is the vector of data and Z7 the vector of targets
@ Precision matrix
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SPDE

LINDGREN ET AL. (2011)

o Let

-(%)

where Zp is the vector of data and Z7 the vector of targets
@ Precision matrix

_«-1_ [ Qop Qpr
Q=X _<QTD QTT)

e Conditional expectation (kriging)
Z3 = — Q1 Q2o
e Conditional variance (covariance matrix of the errors)

Cov(Z§ - Zr) = Q7
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COMPARISON WITH CLASSICAL APPROACH
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COMPARISON WITH CLASSICAL APPROACH

Kriging with SPDE
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COMPARISON WITH CLASSICAL APPROACH

Kriging with covariance function
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COMPARISON WITH

CLASSICAL APPROACH

Kriging vs. SPDE

SPDE
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COMPARISON OF TIMES

Time (s)

Time for kriging

— Kriging (unique neighborhood)
—— Kriging SPDE
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VARYING ANISOTROPY

Varying anisotropy
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VARYING ANISOTROPY

Simulation and sampling
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VARYING ANISOTROPY

Simulation and sampling

Simple kriging with SPDE
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GARTNER HYPE CYCLE

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger TIME

A 4
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EXPECTATIONS

Outperform the time performances of “old geostatistics” in 3D
o Handle one million of targets
e OK to work with Matérn only (or Markovian approximations)

Handle nested models (nugget effect + 2 basic structures)

Handle several variables (co-kriging with linear model of coregionalisation)

Develop block simulation

e Handle varying anisotropies
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ISSUES WITH THE 3D

@ The system size quickly increases
o The sparsity of the precision matrix decreases

@ The Cholesky factorization of Q77 is not possible anymore for a system
size greater than 200 000
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FINITE ELEMENTS APPROXIMATION

w5

Cameletti et al. (2013)

e For kriging, we can use a coarse meshing to reduce the system size and
interpolate the result inside the elements

N

Z(s) = zii(s)

i=1
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FINITE ELEMENTS APPROXIMATION

"‘"‘QA AN
i N
Cameletti et al. (2013)

e For kriging, we can use a coarse meshing to reduce the system size and
interpolate the result inside the elements

N

Z(s) = zii(s)

i=1

e But simulations have to be performed on the final target grid in order to
reproduce the local variability
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SEPARATE THE PROBLEMS

e Work with several meshings : one for the simulation (fine) and one for the
kriging (coarse)

o Find an efficient algorithm to perform non conditional simulation on the
fine meshing (Pereira and Desassis, 2018)

@ Perform the kriging of the residuals on the coarse mesh and interpolate
linearly the result on the fine mesh
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NESTED MODELS

MEASUREMENT ERROR

MODEL

Z(S,’) = Z(S,‘) aF 8(5,’)
with
e Z solution of a SPDE

o £(s;) is a measurement error with variance o2

i
@ The errors are uncorrelated
We want to predict Z1 knowing the observations ZD
e Problem: the precision matrix of (Z7, Zp) is not sparse
@ Solution: consider the larger vector (Z7up, ZD)
o Its precision matrix is sparse
@ The size of the system to solve is Ny + Np

o Can we avoid to put vertices at data locations?

RESSTE - AVIGNON 27 / 39



NESTED MODELS

MEASUREMENT ERROR

e Finite element formulation

N

Z(s) =Y _ zi(s)
i=1
e Z=(z,...,2zy) has covariance matrix X and precision matrix Q
o ¢ = (g(s1),.--,e(sn)) has diagonal variance matrix E (with i** term o?)
o The data model is .
Zp=ATZ+e¢

where A is the N x n sparse matrix with elements a; = ¥;(s;)
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COVARIANCE AND PRECISION MATRICES

The covariance matrix of (Z, Zp) is

s (T TA
"\ AL ATSA+E
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COVARIANCE AND PRECISION MATRICES

The covariance matrix of (Z, Zp) is
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COVARIANCE AND PRECISION MATRICES

The covariance matrix of (Z, Zp) is

¢ PN YA
T\ AT ATYIA+E
And the precision matrix is

x Q+ AEIAT _AE-1
Q= _EIAT E-!

Therefore, the kriging of Z is given by

Z*=(Q+AEAT)LAE1Zp
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DOES IT WORK?

COMPARISON WITH KRIGING (MATERN WITH SMOOTHNESS v = 1 AND RANGE = 40)
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Comparison
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DOES IT WORK?

COMPARISON WITH KRIGING (MATERN WITH SMOOTHNESS v = 1 AND RANGE = 5)

Classical Kriging
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DOES IT WORK?

COMPARISON WITH KRIGING (MATERN WITH SMOOTHNESS v = 1 AND RANGE = 5)

SPDE Kriging (with 1% nugget)

100 observations, 33 x 33 grid
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DOES IT WORK?

COMPARISON WITH KRIGING (MATERN WITH SMOOTHNESS v = 1 AND RANGE = 5)
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DOES IT WORK?

COMPARISON WITH KRIGING (MATERN WITH SMOOTHNESS v = 1 AND RANGE = 5)

Absolute value of the differences > 0.05
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Comparison
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30 / 39



FIRST CONCLUSIONS

e When the range (or v) is large, the meshing can be coarse

o When the range is small, it is useless to put vertices far from data
locations (or we can patch the vertices with the mean)
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NESTED MODELS

K
Z(s) =) Z(s)

where the Z; are independant random fields with covariance Cy

. K
e Z has covariance C =), ; G

@ We don’t know how to approximate Z with a Markovian Random Field
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NESTED MODELS

K
Z(s) =) Z(s)
k=1

where the Z; are independant random fields with covariance Cy

. K
e Z has covariance C =), ; G

e We don’t know how to approximate Z with a Markovian Random Field

Cameletti et al. (2013)

K N
Z(s) =33 2My(s)

k=1 i=1
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MODEL

x

Z(s;) = Z Zi(si) + (si)
k=1
with
@ Z, solution of a SPDE

o (s;) is a measurement error with variance o?

i

e The errors are uncorrelated

o /= (z{k), R z,(\,k)) has covariance matrix ¥, and precision matrix Q
o ¢ =(g(s1),...,2(sn)) has diagonal variance matrix E (with i*! term o?)

@ The data model is _
Zp=AlZ +¢

where Ay is the Ny X n sparse matrix with elements a;; = z/J(k)(sj)

i
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COVARIANCE AND PRECISION MATRICES
OF (Zl, cee ZK, ZD)

bu 0 0 1A
VR 0 oA
e :
0 0 ... Xk Tk Ak
ATE, AIS, .. AfSk SR AITWAC+E
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COVARIANCE AND PRECISION
OF (Zl, cee ZK, ZD)

Q-+ AETTA] AETIAT
AMETIAT Qo+ AEIAT

AE-LAT AcE~LAT
—E-LAT —E-1AT
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COVARIANCE AND PRECISION MATRICES
OF (Zl, cee ZK, ZD)

Q1+ AL ETTAT AETIAT ALETTAL ~AE7?
AETIAT  Q+AETTA] L AETAL —AE1
Q= : : : :
AcE-1AT AKETA] ... Qk+AKET'AL —AKET!
—E1A] —E1AT —EAL E-!

e Use block Gauss-Seidel algorithm to solve the system

e Each subsystem is solved from the Cholesky factorization of
Q+ AETA]

@ The algorithm converges in a few iterations
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DIRECT BLOCK SIMULATION (STATIONARY CASE)

THE DISCRET GAUSSIAN MODEL

We consider vy, ..., vy a partition of the domain D where the sets v; are equal
up to a translation

HYPOTHESIS AND NOTATIONS

@ x is a fixed location and x is a uniform location within a block v
o Z(x) = ¢(Y(x)) where Y(x) is a standard Gaussian variable

e Cy is the covariance of the stationary random field {Y(x),x € D}
o Z(v) = ¢,(Y,) where Y, is a standard Gaussian variable
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THE DISCRET GAUSSIAN MODEL

We consider vy, ..., vy a partition of the domain D where the sets v; are equal
up to a translation

HYPOTHESIS AND NOTATIONS
@ x is a fixed location and x is a uniform location within a block v
o Z(x) = ¢(Y(x)) where Y(x) is a standard Gaussian variable
e Cy is the covariance of the stationary random field {Y(x),x € D}

o Z(v) = ¢,(Y,) where Y, is a standard Gaussian variable

o If the observation locations xi, ..., X, are uniform within their block and
mutually independant then (Y(x1),..., Y(xn), Yo, .-, Yi,) is a Gaussian
vector

o Y(x;) and Y(x;) are independant conditionally to Y,(;y and Y the
Gaussian values of the blocks in which x; and xj belongs
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CONSEQUENCES (EMERY, 2007)

o The correlation r between Y(x;) and Y, is deduced from the covariance
function of the punctual Gaussian Y :

v|2//CY y)dxdy

@ The covariance C,(h) between Y, and Yv+h is given by

C,(h) =Cov(Y,, Yyin) = 2|v\ // hCY y)dxdy
v Jv+
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CONSEQUENCES (EMERY, 2007)

o The correlation r between Y(x;) and Y, is deduced from the covariance
function of the punctual Gaussian Y :

v|2//CY y)dxdy

@ The covariance C,(h) between Y, and Yv+h is given by
C,(h) = Cov(Y,, Yyin) = 2|v\ // . Cy(x — y)dxdy
v Jv+
o Cov(Y(xi), Yy) = rCov(Yy, Yv)
o Cov(Y(x), Y(XJ)) = r’Cov(Yy(i), Yo (i)

Cov(Ya, Von)
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COVARIANCE MATRIX OF
(Yo, - Yo, Y(x1), - -, Y(Xa))

VN

pay re, AT
( rAL, rPAL, AT 4+ (1-r?)l )
where
@ X, is built from the block covariance C,
o Ais the n x N matrix defined by a; = 1¢,,
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PRECISION MATRIX OF
(le, R ¢ Y(ﬁ), cee Y(ﬁ))

VN

1 (1-r2)Q, +r’ATA
1—1r2 —rA
where

@ @, is the precision matrix built from SPDE

o Ais the n x N matrix defined by a; = 1e,,
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CONCLUSIONS

The SPDE approach should be able to replace traditional geostatistics

e Direct Block Simulation for non-stationary models has to be developped

o Inference for varying parameters should be developped

It should allow to integrate geological knowledge
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