Graph Visualization

Andre Suslik Spritzer

INRIA

Graph visualization

- Node-link diagrams
- Navigation and interaction
- Alternative representations
- Applications, toolkits, and libraries

Visual representations of graphs

- Analysis and communication
- Draw on human cognitive abilities
- Make graphs instantly easier to understand

Node-link diagram

- Most typical visual representation of a graph
- Direct visual mapping of the abstract mathematical structure
- Nodes are visual objects connected by lines representing the edges

Node-link diagrams

- Initially hand-drawn
 - Sociograms
 - Already used by early social scientists to study social networks
 - Not very practical...

Graph drawing

- Automated generation of node-link diagrams
- Layout algorithms
 - Calculate node positions and edge curves
- Visual attributes
 - Nodes: size, color, shape, label...
 - Edges: direction, length, color, shape...
- Large community
 - Annual Graph Drawing conference
 - http://www.graphdrawing.org

Layout algorithms

• General aesthetic constraints

Aesthetic criteria for layout algorithms

- Layout design goals, such as:
 - Minimization of edge crossings
 - Minimization of edge bends
 - Maximization of the display of symmetric structures
 - Maximization of orthogonality
 - Uniform edge lengths
 - Even distribution of nodes ...
- Criteria can rarely be simultaneously optimized

Maximizing symmetry

Minimizing crossings

Layout algorithms

- For general graphs or specific classes (e.g., trees, planar graphs, directed acyclic graphs, etc.)
- Many approaches:
 - Force-directed
 - Hierarchical
 - Orthogonal
 - Radial
 - Spectral
 - Attribute-driven
 - 2D, 3D

•••

- Handbook of Graph Drawing and Visualization (TAMASSIA 2013)
 - https://cs.brown.edu/~rt/gdhandbook/

Layout algorithms

Force-directed

Simple node-link diagrams

- Good for static graphs that are neither too big nor too dense
 - But graphs can also be large, dense, or dynamic

Dealing with more complex graphs

- Clustering
- Navigation + interaction
- Alternative visual representations

Clustering

- Useful for large graphs
 - Simplify them so that regular layout algorithms can be used
- Single visual element can represent several nodes
 - Metanodes
 - Edge bundling
- Makes graph structure clearer, but hides detail
 - Solution: interactive level-ofdetail/semantic zooming strategy

Interaction and navigation

- Panning / scrolling
- Zooming
 - Geometric
 - Scale
 - Semantic
 - Level of detail
- Selection
- Search
- Filtering
- Incremental navigation and exploration
 - Large graphs or graphs of unknown size (e.g., the web)

Interaction and navigation

• Visualization strategies

Overview + Detail

Focus + Context

- Use graph topology, semantics, and meta-information to change a nodelink diagram's layout and/or visual attributes
- Exploration
 - Uncover otherwise unseen relationships (i.e., not explicit in the graph's topology)
- Communication
 - Reshape a graph to help tell a story that is already known

- MagnetViz (SPRITZER & FREITAS, 2012)
 - Based on force-directed algorithms
 - Magnets that help users reshape layouts
 - Uses both topology and semantics

• MagnetViz (SPRITZER & FREITAS, 2012)

Original Layout

New Layout

- GraphCoiffure (SPRITZER et al. 2015)
 - Lets users import and beautify graphs
 - Beautification → touch up a visualization to enhance its communicative power or make it conform to a desired aesthetics

Alternative visual representations

- Matrices
 - Adjacency matrix
 - Study by Ghoniem, Fekete, and Castagliola
 - Several advantages over node-link diagrams for larger/denser graphs

Alternative visual representations

• Cubix (BACH 2013)

Visualizing Dynamic Networks with Matrix Cubes

Benjamin Bach, INRIA Emmanuel Pietriga, INRIA Jean-Daniel Fekete, INRIA

Alternative visual representations

Combining the best of both worlds: coordinated views
MatrixExplorer (HENRY 2006)

Hybrid visualizations

- MatLink (HENRY 2007)
 - Enhances matrix visualization
 - Edges are drawn superimposed to the matrix representation
 - Makes path-related tasks easier

Hybrid visualizations

- NodeTrix (HENRY 2007)
 - Hybrid of matrix and node-link visualizations
 - Subgraphs are represented as matrices and linked to other subgraphs by edges

Hybrid visualizations

- Elastic Hierarchies [ZHAO 2005]
 - Combines node-link diagrams and treemaps

Node-Link Diagram

Treemap

Elastic Hierarchy

Graph visualization applications

- Pajek
- Cytoscape
- Tulip
- Gephi
- yEd
- Graphviz
- aiSee
- UCINet

Graph visualization toolkits and libraries

- Ubigraph
 - 3D, several platforms
- C++
 - OGDF
 - Graphviz
 - Tulip
 - Gephi
 - Boost

- Javascript
 - D3
 - Sigma
 - Vis.js
 - Alchemy.js
- .NET
 - Microsoft Automatic Graph Layout

Questions?