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Program for this talk

• present space-time (ST) point process modeling and inference

⇒ focus on fundamental concepts and most prominent model classes

• point towards software implementations : R packages

• develop an application example : space-time modeling of forest fires
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Notations

• S space, T time, ST space-time

• DST space-time support of the point process

• |A| volume of set A

• X = {x1, . . . , xN} a space-time point pattern with xi = (si , ti )

• N the (random) number of points in a point process

• N(A) the random number of points in a space-time set A ⊂ DST

• λ(s, t) space-time intensity

• λ(k)(y1, . . . , yk ) kth order product density
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1 Motivation and space-time set-up

2 Models and their peculiarities

3 Inference techniques
Two-step estimation : 1) intensity, 2) pairwise interaction
Inference with Gibbs processes
Inference with log-Gaussian Cox processes

4 Application example : Modeling wildfire occurrences in Southern France

5 Final remarks
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Typical application contexts

(E) Empirical/correlative modeling vs. (M) mechanistic modeling

E-based approaches : ”density-based”, often regression-like, integrating covariates and
random ST effects ⇒ ST intensity/risk mapping, ST covariance

M-based approaches : ”individual-based” with direct interactions between
”neighboring” points, causality

Often Markovian structures over time at density level (E) or point level (M)

Some application fields :

• biology/ecology : population dynamics (M), species distribution modeling (E),
animal trajectories (M)

• epidemiology (E+M)

• environmental risks : wildfires (E), earthquakes (E+M)

• medicine/neurosciences : spike trains, ... (M)

5/40



What distinguishes ST from S ?

• ”space-time” is 3D space, but with oriented time axis

 time asymmetry, dynamic and evolutionary models, causality ...

• higher dimensionality of models and data in ST

• non separability of S and T ?

• if separable, may estimate S and T components separately

• if nonseparable, model building / estimation / selection may be challenging

• how do we observe arrival times ?

• observation in (quasi-)continuous time
⇒ points may arrive sequentially t1 < t2 < . . . (orderly process)
⇒ can use M-model,

by specifying conditional intensity λ(s, t | Xti<t) (= hazard rate)

• observation in discrete time
⇒ may simplify E-modeling, but more complicated for M-modeling

• arrival times may be not observed at all,
but modeling of temporal dynamics may still be important
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A little reminder for caution

Mechanisms generating a ST point pattern may be highly complex, BUT

• complex models are typically difficult to simulate/estimate/validate,

• information contained in the observed point pattern is often quite limited.

From a statistical perspective, a simple but well-identified model may be
more valuable than an over-complicated model incorporating more
parameters than can reasonably be estimated from the available data.

[Diggle, 2006]

With four parameters I can fit an elephant, and with five I can make him
wiggle his trunk.

(attributed to John von Neumann)

Wei. Least Square Fitting of an Elephant. CHEMTECH, 5(2), 1975.
Mayer et al. Drawing an elephant with four complex parameters. Am. J. Phys. 78, 2010.

Williams. Data fitting and elephants. 2016

B Careful not to be overly ambitious with respect to model complexity.
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Intensity and interaction between points

ST intensity function λ(s, t) characterizes expected point count for arbitrary sets A :

EN(A) =

∫
A
λ(s, t)d(s, t), A ⊂ DST

= first moments

ST interaction is about co-occurrence patterns of points,
e.g. K -function gives expected number of points in a ST buffer around arbitrarily
chosen xi

Notion of separability can apply to intensity and/or interaction :

intensity λ(s, t) = λS (s)× λT (t)

pairwise interaction KST (s, t) ∝ KS (s)KT (t)

conditional intensities λ(s, t | Xti<t) = λS (s | Xti<t)× λT (t | Xti<t)

... ...
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Modeling the space-time intensity function

Primary interest may lie in estimating the space-time intensity function λ(s, t) where

EN(A) =

∫
A
λ(s, t)d(s, t).

Often, λ(s, t) is driven by covariates (including S and T),
and a generalized additive structure may be useful :

log λ(s, t) =
k∑
i

βizi (s, t) + nonlinear covariate effects + ...

Disregard interaction between points⇒ fit a Poisson process ∼ λ(s, t) with likelihood

exp

(
−
∫
DST

λ(x) dx

)
N∑
i=1

λ(xi ).

By (finely) discretizing ST, can estimate parameters in a GAM for Poisson counts.

Estimation of βi is consistent under mild conditions
[Waagepetersen, 2007, Waagepetersen and Guan, 2009].
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Model classes : Models with Gibbs specification

Gibbs specification with potential functions uk : density of X has form

f (X ) = C exp

− ∞∑
k=1

∑
i1,...,ik

uk (xi1 , . . . , xik )

 , C > 0

relative to a unit rate Poisson process

• mechanistic construction and interpretation

• Poisson process if uk ≡ 0 for k > 1

• Gibbs models are typical for interpoint repulsion,
but also some models for attraction (area interaction, Geyer, ...)

• Markov point processes [Van Lieshout, 2000, Van Lieshout, 2006]
especially pairwise interaction processes with uk ≡ 0 for k > 2
⇒ conditional intensity of point in x = (s, t) depends only on ”neighbors” xi ∼ x

• B unknown parameter-dependent constant C

• B moments (λ(s, t), K -function, ...) usually not known in closed form

• a simple ST example : hard-core process
⇒ pairwise interaction : u(x1, x2) =∞ if (s2 − s1, t2 − t1) ∈ A with A ⊂ S × T
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Example : Gibbs process with inhibition
Stationary S process : multiscale model
Strong repulsion for point-to-point distance 0-4, weak repulsion for 4-15, weak
attraction for 15-30
Metropolis–Hastings MCMC simulation
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Model classes : Models with Cox specification

Cox process = Poisson process with random intensity Λ(s, t)

• Λ(s, t) is a ST random field

• Cox processes cannot model repulsion between points,
but allow capturing the effect of unobserved/unavailable covariates

• Bayesian interpretation : Poisson process with nonparametric prior Λ(s, t)

• models with ”mechanistic” flavor : shot-noise Cox processes

Λ(s, t) =
NP∑
i=1

Mik(s − sPi , t − tPi )

with ST kernel k, parent Poisson points (sPi , t
P
i ) and random ”shots” Mi > 0

 Neyman-Scott processes if Mi ≡ 1

• log-Gaussian Cox processes are a popular choice for E-models :

log Λ(s, t) = [fixed covariate effects] + [random effects]

random effects = ST Gaussian random field such as WS (s), WT (t), WST (s, t)
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Example : Log-Gaussian Cox process
(stationary S process)
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Example 2 : Log-Gaussian Cox processes

(nonstationary S process)
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Example 3 : Neyman–Scott processes

taken from [González et al., 2016]

kernels : Gaussian, exponential, uniform (from left to right)
darker color indicates earlier ti
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Model classes with other construction principles

Determinantal processes [Lavancier et al., 2015] :

λ(k)(y1, . . . , yk ) = det[C ](y1, . . . , yk ), k = 1, 2, . . .

• det[C ](y1, . . . , yk ) covariance matrix determinant based on a ST covariance C

• pair correlation function = correlation of C , but proper treatment of ST yet open

• full likelihood inference possible yet requires some approximation tricks

Space-time birth-death processes [Renshaw, 2015] :

• typically formulated through conditional intensity λ(s, t | Xti<t)

• can be pure birth, e.g. self-exciting processes (Hawkes processes) :

illustration from [Reinhart, 2017]

⇒ popular for earthquake modeling (ST) and in finance (T)
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Two-step estimation

• use first and second-order information

• suitable when second moments (K , pair correlation) are easily available
(Cox-like, determinantal, but not Gibbs)

• Step 1 : estimate λ(s, t) (ST kernel smoothing, Poisson process model, ...)

• Step 2 : estimate interaction parameters

• minimum contrast :

θ̂ = argminθ

∫
DST

(
K c

emp(s, t)− K c
θ(s, t)

)2
d(s, t)

with calibration parameter c > 0
⇒ nice theoretical results (consistency, asymptotic normality)
[Waagepetersen and Guan, 2009]

• pairwise likelihood with pairwise contributions

`(θ; x1, x2) =
ω(x1, x2)λ(2)(x1, x2)∫

ST

∫
ST
ω(y1, y2)λ(2)(y1, y2) dy1dy2

⇒ numerical integration, but very computer-intensive in ST
see [Guan, 2006] for S processes
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Inference with Gibbs processes

Density : f (X ) = C exp

− ∞∑
k=0

∑
i1,...,ik

uk (xi1 , . . . , xik )

 , C > 0

• if orderly process with known λ?(s, t) = λ(s, t | Xti<t) ⇒ full likelihood

exp

(
−
∫
DST

λ?(s, t)d(s, t)

)
N∏
i=1

λ?(si , ti )

• otherwise, use Monte–Carlo likelihood to approximate C ,
or pseudo-likelihood with λ? replaced by λ??(x) = f (X ∪ x)/f (X \ x).

• if f (X ) ∝ exp
(
−
∑m

`=1 β`g`(X )
)
, discretize

∫
DST

... ⇒ logistic regression for β`
[Baddeley and Turner, 2000, Baddeley et al., 2014], [Opitz, 2009] for 3D case

• edge effects ? i.e., interaction with unobserved points in DC
ST

⇒ plus-sampling on DST ⊕ r0 for simulation,
minus-sampling on DST 	 r0 for estimation
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Inference with log-Gaussian Cox processes

W (s, t) = log Λ(s, t) is a ST Gaussian random field

Likelihood is intractable :

`(W ) = E exp

(
−
∫
DST

exp(W (s, t)) d(s, t)

)
N∏
i=1

exp(W (si , ti ))

• two-step estimation possible : pair correlation function is exp(C(x1, x2))

• Bayesian inference : hierarchical model for a Poisson process

X | Λ(s, t) ∼ Poisson process(Λ(s, t))

log Λ(s, t) ∼ Gaussian process(s, t;hyperpars)

hyperpars ∼ ...

Hyperparameters determine variance and dependence in components of GP prior
(variances in fixed and random effects, nugget, range, nonseparability, ...).
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Bayesian inference with log-Gaussian Cox processes

`(W ) = E exp

(
−
∫
DST

exp(W (s, t))) d(s, t)

)
N∏
i=1

exp(W (si , ti ))

• E(...) means integrating with respect to the density of the latent ST field W (s, t)

• Markov-Chain Monte-Carlo : iteratively simulate ST-discretized W (s, t)

• use Gaussian approximation to posterior for Metropolis–Hastings proposals W̃ (s, t),
see Section 4.4 of [Rue and Held, 2005]
⇒ mixing may be slow

• rather good mixing with MALA-MCMC : use gradient of log-posterior density
[Taylor and Diggle, 2014]

• Integrated Nested Laplace Approximation [Rue et al., 2009, Opitz, 2017]

• Laplace approximation for high-dimensional integrals
• implemented in R-INLA for a large variety of generalized additive regression models
• usually works fine in practice for log-Gaussian Cox processes
• numerically efficient Gauss–Markov models for fast matrix calculations

MCMC and INLA provide ST posterior Λ̂(s, t) ”for free” ⇒ ST mapping
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R packages for log-Gaussian Cox processes

lgcp [Taylor et al., 2011]

very complete functionality, including

• minimum-contrast estimation

• simulation-based estimation (MALA-MCMC) or interface to RINLA

• many models available (S models from RandomFields + other random effects),
but limited for ST covariance

RINLA [Krainski et al., 2017, Rue et al., 2017]
see http://www.r-inla.org/

• available ST models :

• temporal random effects : random walks, autoregression, ...

• ST models : S innovations + temporal autoregression

• S models : CAR, SPDE (= Gauss–Markov approximation to Matérn covariance)

• some nonseparable SPDE models soon to come

• packages providing additional features and easier syntax (but mainly S, not ST) :
• geostatsinla [Brown, 2015]
• inlabru : off-the-shelf fitting of log-Gaussian Cox processes for ecological applications
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Recap of inference techniques
Frequentist :

• full likelihood for

• Poisson models
• orderly with known λ(s, t | Xti<t)

⇒ typically, ST discretization and/or numerical integration

• minimum contrast, pairwise likelihood
⇒ for Cox-like models (known moments)

• pseudo-likelihood, Monte-Carlo likelihood
⇒ for Gibbs-like models (unknown moments)

Bayesian :

• simulation-based : MCMC
⇒ for Cox-like models

• using analytical approximations : INLA
⇒ for log-Gaussian Cox processes

R implementations :

• lgcp and RINLA for log-Gaussian Cox processes

• spatstat for S processes

• stpp : focus on ST data and methodology, but parameter estimation yet to be
developed
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Wildfire reports from the Prométhée database

We focus on the Bouches-du-Rhône department :
X = 2831 reported wildfires (daily) from 1981-2015,
spatially indexed at the center of grid cells, with burnt area ai .
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Relevant covariates

• climate and weather : temperature, precipitation, humidity, wind speed, ...
(Salon-de-Provence weather station)

• environmental (IGN, 200m resolution grid)

Altitude Gradient Road network

Urbanization Water Vegetation types

� Deciduous

� Conifer

� Mix

� Other
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Modeling approach

[Gabriel et al., 2017]

Goals :

• predict and map wildfire risk over S and T

• detect characteristic spatio-temporal structures

Modeling approach based on log-Gaussian Cox processes :

• yearly time step

• descriptive analyses of daily weather variables’ impact ⇒ yearly aggregation

• create synthetic covariate for temporal inhibition at small spatial scales

• check models for residual space-time effects (clustering, interaction)
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Temporal inhibition at small spatial distance

• simple explanation (no combustible material left),
but nice example with both clustering and repulsion at different scales
⇒ ST extent of inhibitive effect ? (B high positional uncertainty in si )

• normalized empirical intensity ratio index to confront expected/observed nearby
event counts after an event ⇒ value < 1 indicates repulsion

3-years follow-up period 5-years follow-up period
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⇒ construct a covariate zinhib(s, t) =
∑N

i=1(tmax − (t − ti )+)+ × 1(‖s − si‖ ≤ rmax)

with tmax = 5 years and rmax = 1km
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Log-Gaussian Cox model
Stochastic intensity of log-Gaussian type

Λ(s, t) = exp

β0 +
∑

c∈clim
βczc (t) +

∑
`∈land use

β`z`(s) + βinhibzinhib(s, t) + W (s, t)

 ,

• covariates :
• clim : related to proportion of days with exceedances of thresholds for mean

temperature and deficits below thresholds for cumulated precipitation within the 4
weeks preceding the day

• land use : proportion of land occupied by water, forest (conifer, deciduous), road and
paths, buildings and average value of altitude and norm of the gradient

• inhib : temporal inhibition effect (over 5 years)

• Gaussian ST effect :

W (s, t) = W (s) S marginal effect, (1)

W (s, t) = W (s) + W (t) S and T marginal effects, (2)

W (s, t) = Wt(s) S effect i.i.d. in time for t = 1981, . . . , 2015. (3)

• inference with R-INLA :
• noninformative Gaussian priors on fixed effects βi

• S Matérn field W (s) with smoothness ν = 1
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ST discretization

Time discretization = years 1981 to 2015
Triangulation of spatial domain to solve SPDE for Gauss–Markov approximation W (s)
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Estimated covariate effects

Λ(s, t)=exp

(
β0 +

∑
clim

βczc (t)+
∑

land use

β`z`(s)+βinhibzinhib(s, t)+W (s)+W (t)

)

Covariate Posterior 95% credible
mean interval

intercept? -7.3 [-8.06,-6.56]
inhib -0.13 [-0.64,0.35]
clim1? 0.07 [0.05,0.1]
clim2? 0.57 [0.39,0.75]
clim3? 0.25 [0.2,0.31]
water? -3.64 [-5.03,-2.36]
forest 0.59 [-0.01,1.19]
conif? 0.79 [0.19,1.4]
decid -0.3 [-1.12,0.51]
alti? -0.54 [-0.79,-0.28]
grad? 0.25 [0.11,0.38]
road? 0.49 [0.33,0.65]
path? 0.29 [0.12,0.47]
build -0.04 [-0.1,0.01]
veget? 0.67 [0.13,1.22]

? Significant effects.

inhib not significant, but high positional
uncertainty. Negative coefficient indicates
tendency towards inhibition.

Hot and dry weather increases fire risk.

The presence of coniferous, dense road or path
networks strongly favors wildfires
whereas
fire risk tends to significantly decrease with
altitude and water.
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Spatio-temporal variation and interaction
Fitted posterior intensity is separable in S and T.
We use the posterior mean for the log-Gaussian models.

only S marginal S and T
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Spatio-temporal
� clustering
� interaction
� clust + inter

Taking into account the stochasticity in the posterior would further reduce zones with
clustering/interaction.33/40



Spatial prediction

Posterior means of spatial intensities of yearly wildfires (per km2)

Purely S intensity model :

Λ(s, t) = exp

(
β0 +

∑
land use

β`z`(s) + W (s)

)

Posterior mean Log of posterior mean
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Estimated time trend

spatially averaged posterior means of temporal intensities of yearly wildfires

climate covariates only
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• observed number of wildfires for each year.
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Prediction forward in time
Predicted spatial log-intensity for 2016 (per km2)
based on model (2) with marginal S and T effects fitted with data until 2015
using climatic covariates of 2016 for prediction

• Wildfires observed in 2016 from January to October
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Ongoing work for this application

• more complex ST dependence in W (s, t) (auto-regression, nonseparable, ...)

• model validation/selection : DIC, WAIC, residual analysis, ...

• weekly, daily modeling and seasonal effects

• spatially varying climate covariates + climate change scenarios

• model the full PACA region, not only the Bouches-du-Rhône department

• consider burnt areas as marks
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Some nice things not discussed here ...

• Gaussian-based Cox processes :
if Λ(s, t) = f (W (s, t)) ≤ c <∞, can get rid of the ST discretization error
⇒ MCMC mimicks random thinning of a Poisson process with rate c
[Gonçalves and Gamerman, 2015]

• variational inference, EM inference

• marked ST point processes : mark mi associated to point xi

• conditional to covariates,
geostatistical marks are stochastically independent of the underlying points X
⇒ separate modeling of X and M = {m1, . . . ,mN}

• BUT : marks may depend stochastically on the intensity

• can consider the point process {(xi ,mi )} over DST × mark space

• if marks are categorical ⇒ multivariate point process

⇒ great number of possible models ...
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Final remarks

• typical issues with complex ST data :

• heterogeneity in spatial and temporal data types and observation scales

• curse of dimensionality : dim(S) = 2, dim(ST) = 3, dim(ST + marks) > 3

• B nonseparable kernel smoothing

• B inference often requires numerical integration
e.g., Gibbs pseudo-likelihoods, ST discretization for log-Gaussian Cox processes

• in empirical modeling, point counts may be aggregated over larger ST units
⇒ lack of information, but can use model structure similar to Cox processes

• many S models based on S geometric objects (kernels / interaction buffers)
⇒ use ST objects, e.g. discs  ST cylinders
⇒ distinguish objects with forward/backward/symmetric orientation in time

• model selection/validation tools : visual checks on summary statistics,
likelihood-based tools, residual analysis, cross-validation (easier in ST than in S)

• a nice reference for ST point process inference :

González, J. A., Rodŕıguez-Cortés, F. J., Cronie, O., & Mateu, J. (2016). Spatio-temporal
point process statistics : a review. Spatial Statistics, 18, 505-544.
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