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SPDE and Geostatistics

The stochastic modelling of natural phenomena usually follows two different
approaches:

• Stochastic Calculus: Physical intuition in a random context.
→ Stochastic Processes, Stochastic Integrals, Stochastic Differential
Equations, Stochastic Partial Differential Equations (SPDE’s), etc.

• Geostatistics and Spatial Statistics: Fixing models to data.
→ Random Functions, Covariance functions and Variograms, Inference, etc.

What are the connection between these approches?
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SPDE and Geostatistics

Consider a SPDE of the form
LU = X

with L some differential operator X a Gaussian random function. We look at for a
Gaussian random function U solution to this equation. Imagine there exists an
unique random function solution to this equation.

→ We could describe completely this solution through its covariance and mean!

→ There must be some connections!
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SPDE and Geostatistics: Example

Following Lindgren and Rue (2011), consider the SPDE over the space Rd :

(κ2 −∆)α/2U = W

with κ > 0, α > d/2 and W the White Noise.

Its solution has a Matérn stationary covariance function:

ρ(x − y) =
1

(2π)d/22α−1κ2α−dΓ(α)
(κ|x − y |)α−d/2Kα−d/2(κ|x − y |)

with Kα−d/2 the modified Bessel function of second kind of order α− d/2 > 0.
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SPDE and Geostatistics: Example

Consider the spatio-temporal covariance model

CZ ((x , t), (y , s)) =
σ2

(4απ(t + s))d/2
e
−
|x − y |2

4α(t + s)

with α > 0.

Simulation by Cholesky decomposition with α = 0.01 and σ2 = 20.
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SPDE and Geostatistics: Example

This covariance describes the Diffusion of a White Noise
∂Z

∂t
− α∆Z = 0

Zt=0 = σW

(1)

with α, σ > 0.
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SPDE and Geostatistics: Motivations

We have both theoretical and practical motivations:

• Connection between geostatistical models and physical phenomena.

• Source of new geostatistical models, based on solutions of SPDE, eventually
with special properties. Specially adapted for the spatio-temporal case.

• Utilisation of PDE solvers to obtain fast and precise simulations of
complicated geostatistical models.
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SPDE and Geostatistics: Outline

In this presentation we show

• Some mathematical basis for our results.

• Results on existence and uniqueness of stationary models solutions of some
SPDE’s, and application to some notable cases.

• Analysis of some evolution models, which involve physical phenomena like
diffusion, convection, reaction, etc.
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Section 2

Mathematical Basis
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Classical Geostatistic model

Gaussian random function:

• (Z (x))x∈Rd a real Gaussian random field indexed on the space.

• Mean function: mZ (x) = E(Z (x)) is any real function.

• Covariance function: CZ (x , y) = Cov(Z (x),Z (y)) is a positive-definite real
function.
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Classical Geostatistic model: Stationnarity

Stationary Gaussian random function: (Z (x))x∈Rd Gaussian random field such
that,

• The mean function mZ (x) is constant.

• The covariance function depends only in the lag of the two variables:
CZ (x , y) = ρ(x − y) for some stationary positive-definite function ρZ .

Bochner’s Theorem
ρZ is a stationary positive-definite continuous function if and only if it is the
Fourier transform of an even, positive and finite measure µZ :

ρZ (h) =
1

(2π)d/2

∫
Rd

e−ih
T ξdµZ (ξ) ∀h ∈ Rd

The measure µZ is called the Spectral Measure of Z , and can be used to
describe the covariance structure.
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Linear SPDE’s

Let L be a real linear operator defined for functions (or something more
general...). Let X be a Gaussian random function. We look at for a Gaussian
random function U such that

LU = X (2)

We call this type of equation a linear SPDE (abuse of language). We interpret
this equation in two senses:

• U solves (2) strictly if

LU(x)
a.s.
= X (x) ∀x ∈ Rd

• U solves (2) in law if

(LU(x1), ...,LU(xN))
law
= (X (x1), ...,X (xN)) ∀(x1, ..., xN) ∈ Rd∗N

In this Gaussian framework, this is equivalent to ask:

mX = mLU (= LmU) CX = CLU (= (L ⊗ L)CU)

All of this equation have a rigorous meaning in a distributional sense.
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Consequence of the distributional approach

We have a meaning for not necessarily finite spectral measures in the stationary
case.

Bochner-Schwartz Theorem:
If ρ is a real stationary positive-definite distribution, then it is tempered and it is
the Fourier transform of an even, positive and tempered measure,

ρ = F (µ)

• We call Spectral Measure to any positive, even and tempered measure µ.
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Example: the White Noise

We can define the Gaussian White Noise as a zero mean Gaussian process
indexed on the measurable sets B(Rd), (W (A))A∈B(Rd ) such that

Cov( W (A) , W (B) ) = |A ∩ B|

The White Noise is stationary in distributional sense, and has a not finite spectral
measure

µW = (2π)−d/21
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Section 3

Stationary Solutions for some SPDE’s
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Stationary Solutions for some SPDE’s

Let us consider the next kind of linear real operators Lh defined as:

Lh(·) = F−1(hF (·))

where h is a smooth function with slow growing behaviour and such that h = ȟ ,
and F is the Fourier Transform. This function h is called the symbol of Lh.
Examples of this operators:

• h(ξ) = (κ2 + ξT ξ)α/2 ⇒ Lh = (κ2 −∆)α/2

with κ2 > 0, α ∈ R.

• h(ω, ξ) = iω + αξT ξ ⇒ Lh =
∂

∂t
− α∆

with α > 0 (spatio-temporal framework).

• h(ω, ξ) = i(ω + vT ξ) + αξT ξ + κ2 ⇒ Lh =
∂

∂t
− α∆ + vT∇+ κ2I

with v ∈ Rd , κ2 > 0, α > 0 (spatio-temporal framework).

• h(ω, ξ) = −ω2 + c2ξT ξ ⇒ ∂2

∂t2
− c2∆

with c > 0 (spatio-temporal framework).
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and F is the Fourier Transform. This function h is called the symbol of Lh.
Examples of this operators:

• h(ξ) = (κ2 + ξT ξ)α/2 ⇒ Lh = (κ2 −∆)α/2

with κ2 > 0, α ∈ R.

• h(ω, ξ) = iω + αξT ξ ⇒ Lh =
∂

∂t
− α∆

with α > 0 (spatio-temporal framework).

• h(ω, ξ) = i(ω + vT ξ) + αξT ξ + κ2 ⇒ Lh =
∂

∂t
− α∆ + vT∇+ κ2I

with v ∈ Rd , κ2 > 0, α > 0 (spatio-temporal framework).

• h(ω, ξ) = −ω2 + c2ξT ξ ⇒ ∂2

∂t2
− c2∆

with c > 0 (spatio-temporal framework).
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Stationary Solutions for some SPDE’s

The operators of this type maintain stationarity:

→ If U is a centred stationary random field with spectral measure µU , then LhU
is also stationary and its spectral measure is

µLhU = |h|2µU
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Stationary Solutions for some SPDE’s

Objective
To find stationary solutions to the equation

LhU
law
= X

with X a stationary random field with spectral measure µX .

Supposing zero mean, this is equivalent to find a spectral measure µU such that

|h|2µU = µX

→ a division problem.
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Result: Existence and Uniqueness

Proposition

There exists a stationary solution to LhU
law
= X if and only if∫

Rd

dµX (ξ)

|h(ξ)|2(1 + ξT ξ)N
<∞

for some N ∈ N. In this case, we have that

µU :=
µX

|h|2

is a well-defined spectral measure solution to |h|2µU = µX . In addition, the
solution is unique if and only if |h| > 0.
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Examples of uniqueness

Matérn Model: consider de equation over Rd :

(κ2 −∆)α/2U = W

with W the White Noise, κ2 > 0, α ∈ R, and ∆ the Laplace operator.

The symbol function is h(ξ) = (κ2 + ξT ξ)α/2 which is always positive.

We can verify that h and µW satisfies the integral conditions.

→ there exists an unique stationary solution, and its spectral measure is

dµU(ξ) =
dµX (ξ)

|h(ξ)|2
=

1

(2π)d/2
dξ

(κ2 + ξT ξ)α

If α > d/2, this measure is finite → Matérn!
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Examples of uniqueness

Stein Model: (Stein (2005) ) it is known as a stationary spatio-temporal model
with spectral measure

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

(a(s2 + ω2)β + b(k2 + ξT ξ)α)
ν

with κ2, s, a, b > 0, α, β, ν ∈ R.

We can take the function

h(ω, ξ) =
(
a(s2 + ω2)β + b(k2 + ξT ξ)α

)ν/2
And we propose an SPDE for this model:(

a(s2 − ∂2

∂t2
)β + b(κ2 −∆)α

)ν/2
S = W

where W is a (spatio-temporal) White Noise.

h and µW satisfy the conditions → The Stein model is the unique stationary
solution.
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Examples of uniqueness

Some Spatio-temporal Markov Models: If we take the spatio-temporal SPDE:

κ2U +
M∑
k=1

ak
∂kU

∂tk
+

N∑
j=1

(−1)jbj∆
(j)U = W

with W a (spatio-temporal) White Noise, κ2 > 0 and some suitable conditions for
the coefficients (ak)k and (bj)j .

The symbol is positive and equals to

h(ω, ξ) = κ2 +
M∑
k=1

ak i
kωk +

N∑
j=1

bj |ξ|2j

The function h and µW satisfy the conditions → There exists an unique stationary
solution with spectral measure,

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

(κ2 +
∑
k≤M
k even

ak(−1)k/2ωk +
∑
j

bj |ξ|2j)2 + (
∑
k≤M
k odd

ak(−1)(k−1)/2ωk)2

By Rozanov’s Theorem, this is the spectral measure of a spatio-temporal
Markov Model (Rozanov (1982)).

R. Carrizo V, N. Desassis , D. Allard RESSTE Workshop 16/05/2017 23 / 36



Examples of uniqueness

Some Spatio-temporal Markov Models: If we take the spatio-temporal SPDE:

κ2U +
M∑
k=1

ak
∂kU

∂tk
+

N∑
j=1

(−1)jbj∆
(j)U = W

with W a (spatio-temporal) White Noise, κ2 > 0 and some suitable conditions for
the coefficients (ak)k and (bj)j .
The symbol is positive and equals to

h(ω, ξ) = κ2 +
M∑
k=1

ak i
kωk +

N∑
j=1

bj |ξ|2j

The function h and µW satisfy the conditions → There exists an unique stationary
solution with spectral measure,

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

(κ2 +
∑
k≤M
k even

ak(−1)k/2ωk +
∑
j

bj |ξ|2j)2 + (
∑
k≤M
k odd

ak(−1)(k−1)/2ωk)2

By Rozanov’s Theorem, this is the spectral measure of a spatio-temporal
Markov Model (Rozanov (1982)).

R. Carrizo V, N. Desassis , D. Allard RESSTE Workshop 16/05/2017 23 / 36



Examples of uniqueness

Some Spatio-temporal Markov Models: If we take the spatio-temporal SPDE:

κ2U +
M∑
k=1

ak
∂kU

∂tk
+

N∑
j=1

(−1)jbj∆
(j)U = W

with W a (spatio-temporal) White Noise, κ2 > 0 and some suitable conditions for
the coefficients (ak)k and (bj)j .
The symbol is positive and equals to

h(ω, ξ) = κ2 +
M∑
k=1

ak i
kωk +

N∑
j=1

bj |ξ|2j

The function h and µW satisfy the conditions → There exists an unique stationary
solution with spectral measure,

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

(κ2 +
∑
k≤M
k even

ak(−1)k/2ωk +
∑
j

bj |ξ|2j)2 + (
∑
k≤M
k odd

ak(−1)(k−1)/2ωk)2

By Rozanov’s Theorem, this is the spectral measure of a spatio-temporal
Markov Model (Rozanov (1982)).

R. Carrizo V, N. Desassis , D. Allard RESSTE Workshop 16/05/2017 23 / 36



Examples of uniqueness

Some Spatio-temporal Markov Models: If we take the spatio-temporal SPDE:

κ2U +
M∑
k=1

ak
∂kU

∂tk
+

N∑
j=1

(−1)jbj∆
(j)U = W

with W a (spatio-temporal) White Noise, κ2 > 0 and some suitable conditions for
the coefficients (ak)k and (bj)j .
The symbol is positive and equals to

h(ω, ξ) = κ2 +
M∑
k=1

ak i
kωk +

N∑
j=1

bj |ξ|2j

The function h and µW satisfy the conditions → There exists an unique stationary
solution with spectral measure,

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

(κ2 +
∑
k≤M
k even

ak(−1)k/2ωk +
∑
j

bj |ξ|2j)2 + (
∑
k≤M
k odd

ak(−1)(k−1)/2ωk)2

By Rozanov’s Theorem, this is the spectral measure of a spatio-temporal
Markov Model (Rozanov (1982)).
R. Carrizo V, N. Desassis , D. Allard RESSTE Workshop 16/05/2017 23 / 36



Notable example: Heat Equation

Let us consider the next version of a Stochastic Heat Equation:

∂U

∂t
− α∆U = X

with α > 0.

The symbol of the associated operator is

h(ω, ξ) = iω + αξT ξ

We have h(0, 0) = 0.

If there is a stationary solution, it is not unique → random constants can be
added.
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Example: Heat Equation

Case with a White Noise source term:

∂U

∂t
− α∆U = W

We analyse if the (eventual) measure

dµU(ω, ξ) =
1

(2π)(d+1)/2

dωdξ

ω2 + α2(ξT ξ)2

satisfies the conditions.

Result
There are stationary solutions to this equation only for dimension d ≥ 3.

In dimension d = 3, the fundamental stationary covariance solution is:

ρU(u, h) =
π

2α|h|
− π

4α
√
|u|

erfc

(√
2|u|
α|h|2

)
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Section 4

First order evolution models
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First Order Evolution Model

Let us consider the next evolution equation in R+ × Rd :{
∂U

∂t
+ LgU = X

Ut=0 = U0

where,

• U0 is a stationary spatial random field

• X a spatio-temporal stationary random field

• Lg = F−1S (gFS(·)) is a spatial operator defined trough the symbol g , with
g = ǧ , and <(g) ≥ 0. FS denotes the spatial Fourier Transform.

The spatio-temporal symbol of the operator is

h(ω, ξ) = iω + g(ξ)
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First Order Evolution Model: Duhamel’s
Formula

{
∂U

∂t
+ LgU = X

Ut=0 = U0

Duhamel’s formula allows us to solve strictly this equation:

U(t, x) = F−1S

(
e−g(ξ)tFS(U0)(ξ) +

∫ t

0

e−g(ξ)(t−u)FS(X )(u, ξ)du

)
(x)

FS(U)(t, ξ) = e−g(ξ)tFS(U0)(ξ) +

∫ t

0

e−g(ξ)(t−u)FS(X )(u, ξ)du
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First Order Evolution Model

When X = W and U0 has a spectral measure µU0 , the covariance of the solution
U is spatially stationary, and we can note:

CU((x , t), (y , s)) =

F−1S

(
e−igI (ξ)(t−s)−gR (ξ)(t+s)µU0 +

e−igI (ξ)(t−s)
(
e−gR (ξ)|t−s| − e−gR (ξ)(t+s)

)
(2π)d/22gR(ξ)

)
(x−y)

where gR and gI are the real and imaginary parts of g respectively.

Two possible analysis:

• Choice of µU0 such that the covariance is stationary.

• Convergence to a stationary model as t →∞.
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First Order Evolution Model: choice of
initial condition

If we take µU0 to be:

dµU0(ξ) =
dξ

(2π)d/22gR(ξ)
(3)

The formula turns to

CU((x , t), (y , s)) = F−1S

(
e−igI (ξ)(t−s)−gR (ξ)|t−s|

(2π)d/22gR(ξ)

)
(x − y)

and the solution is stationary in space-time.

Remark: The division (3) must be well-defined as a spectral measure!
→ use criteria of existence of a stationary solution! With µX = µW and symbol

h(ω, ξ) = iω + g(ξ)

In particular if gR > 0 and it inverse doesn’t grow very fast, the division is possible.
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First Order Evolution Model: convergence

Let us analyse the asymptotic behaviour:

CU((x , t), (y , s)) =

F−1S

(
e−igI (ξ)(t−s)−gR (ξ)(t+s)µU0 +

e−igI (ξ)(t−s)
(
e−gR (ξ)|t−s| − e−gR (ξ)(t+s)

)
(2π)d/22gR(ξ)

)
(x−y)

If gR > 0, we can take t, s →∞ and we re-obtain the expression

F−1S

(
e−igI (ξ)(t−s)−gR (ξ)|t−s|

(2π)d/22gR(ξ)

)
(x − y)

→ convergence to a spatially stationary fixed point, given by the optimal
choice of µU0 .
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First Order Evolution Model: Example

Consider the equation {
∂U

∂t
+ (κ2 −∆)αU = W

Ut=0 = U0

We have g(ξ) = (κ2 + ξT ξ)α which is positive and satisfies the division condition.
→ convergence to the stationary solution:

ρU(u, h) = F−1S

(
e−(κ

2+ξT ξ)α|u|

(2π)d/22(κ2 + ξT ξ)α

)
(|h|)

ρU(u, h) =
1

|h|d/2−1

∫ ∞
0

Jd/2−1(|h|r)
e−(κ

2+r2)α|u|rd/2

2(κ2 + r2)α(2π)d/2
dr

where Jd/2−1 is the Bessel function of the first kind. ρU is a well defined function
for α > d/2.
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First Order Evolution Model: Example

The spatial trace of this solution is a Matérn Model:

ρU(0, h) = F−1S

(
1

(2π)d/22(κ2 + ξT ξ)α

)
(|h|)

So the spatial trace of the stationary solution, US , satisfies the equation

√
2(κ2 −∆)α/2US = WS

where WS is a spatial White Noise. → Take a Matérn Model as a initial condition.
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First Order Evolution Model: Simulations

κ = 1/6, α = 4. Finite Elements method in space, Finites Differences method in
time.
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Section 5

MUCHAS GRACIAS
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Schwartz L. (1966), Théorie des Distributions. Hermann, Paris.

Stein M.L. (2005), Space-Time Covariance Functions. Journal of the
American Statistical Association. Vol. 100, No. 469 (March 2005), pp.
310-321.

R. Carrizo V, N. Desassis , D. Allard RESSTE Workshop 16/05/2017 36 / 36


	Introduction
	Mathematical Basis
	Stationary Solutions for some SPDE's
	First order evolution models
	MUCHAS GRACIAS

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 


