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Graph : a mathematical definition
General notation

P T A graph G is a triplet (V, &, W) where

m V = set of N vertices of the graph.

m £ CV XV = set of edges. Adjacent vertices i and j are
denoted i ~ j.

m W : E— R = symmetric weight function. Weight of
edge (i,/) is denoted wj; = w;; .

Work Hypothesis

Only undirected and loopless graphs are studied.
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Graph Signals

General notation
for graphs

Graph signal

A graph signal is a vector of real values indexed by the
vertices of a graph.
It is said random when its values at the vertices are random.

Example : marketing interest for a new product among the
users of a social network.

Work Hypothesis

Only Gaussian random signals are considered.
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Shift operator

Definition : Shift Operator

A shift operator S on graph G is a N x N matrix such that :
Si#0=i=j ou i~j

For k €N, S verifies : [§¥];; # 0= i = j or 3 a chain of
vertices of length < k between nodes / and .
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Stationary signal
processing on
graphs

Pereira, Desassis

Graph filter

Work Hypothesis

S is symmetric : accordingly, it is diagonalizable on R.
Hence, denote \; < ... < Ay its eigenvalues and V its
eigenbasis (VVT = VTV =1).

A1
S=VAVT with A = ( )
AN

Definition : Graph filter

A graph filter h(S) is a matrix defined from a function
h: R — R by the relation :

h(A1)
h(S) .= Vh(A) VT =V < ) v’
h(An)

Note : Only need to know h(A1),...,h(Ay) to define h(S)
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Stationarity on graphs

Definition : Stationarity on graphs

Stationary signal
processing on

graphs A random graph signal z is said S-stationary if :

1. its mean is constant over V (denoted m,)

2. its covariance matrix 3, is a graph filter for a function
Rz R Ry, called the spectrum function of z:

Y, =E{(z—m;)(z - mz)T} = R,(S)
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Stationarity on graphs

Definition : Stationarity on graphs

Stationary signal
processing on

graphs A random graph signal z is said S-stationary if :

1. its mean is constant over V (denoted m,)

2. its covariance matrix 3, is a graph filter for a function
Rz R Ry, called the spectrum function of z:

Y, =E{(z—m;)(z - mz)T} = R,(S)

S-stationary signals with &, of the form £,(x) = (ap +a1x) !
correspond to markov random fields with precision matrix :

Q=al +aS
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Simulation of stationary graph signals

Example : White noise
Stati i | . . . .
ptO I  The graph white noise ¢ is the random signal whose
h . . .
Srapne components are independent standard gaussian variables.

Pereira, Desassis
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Simulation of stationary graph signals

Example : White noise
Stati i | . . . .
ptO I  The graph white noise ¢ is the random signal whose
h . . .
Srapne components are independent standard gaussian variables.

Proposition

To simulate a S-stationary signal z and with spectrum
function f : R — R, :

m Generate a graph white noise
m Compute z = Vf(S)e

Proof-..
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Simulation of stationary graph signals

Example : White noise
Stati i | . . . .
ptO I  The graph white noise ¢ is the random signal whose
h . . .
Srapne components are independent standard gaussian variables.

Proposition

To simulate a S-stationary signal z and with spectrum
function f : R — R, :

m Generate a graph white noise
m Compute z = Vf(S)e

Proof-..

Problem

How to compute h(S)e?
h(S)e = Vh(A)V e
= Diagonalization + Storage : Expensive!!
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Fast computation of graph filters

e Computing p(S) for a polynomial function p is feasible
o C Ml without diagonalization! (Proof... €59)

ra iiters . o .
=0 For more general functions h : approximate h by a polynomial.

Workflow

m Find a polynomial approximation p of h s.t.
Vk € |[17 N]]ap()‘k) & h()‘k)
m Compute p(S) (matrix polynomial)

m Take h(S) =~ p(8S) (same eigenbasis, similar eigenvalues)

= Polynomial approximation of h on the interval [Amin, Amax]
using Chebyshev polynomials (fast by FFT)
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Model Inference

Model Inference
m Empirical method for model inference
m Model inference by likelihood-based method
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Empirical method for model inference

Notation
S a symmetric shift operator : § = VAV with :

B A < ... < )y its eigenvalues

A1
mS=V| - v’
el mened An

z random S-stationary signal with :
m Mean 0
m Covariance matrix X, = £,(S) = VR, (A)VT

Problem

Given a realization of S-stationary signal z, find its spectrum
function K, empirically.
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Power spectral density (PSD)

Proposition

The signal 2 = V7 z of z has covariance matrix :

Rz(M1)
22=VTZZV=QZ(A)=( )
Rz(An)

The components of Z are independent random variables.

Empirical method
for model inference

Definition : Power spectral density
The power spectral density p, of z is the vector defined as :
p, = diag(VTE,V) = (&(M), -, R (M)
Its elements are (equivalently) :
m the eigenvalues of the covariance matrix of z

m the variance of the components of z = V7 z :
Rz(\k) = Var(%) = [Sz]u = E(%)
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Estimation of K,

Problem : How to estimate £,7

Empirical method
for model inference ( )

Gaussian kernel (centered at x), g

DA exp <—

E (11e(5)z]?)

E(g8(S)el?)

Where ||.|| is the Euclidean norm.
Proof...

realization of z that is known.

Pereira, Desassis

Models and inference for random fields indexed on undirected graphs

Idea : Kernel Density Estimation of &, over an interval
[a,b] D {\1,..., \n} (see Perraudin and Vandergheynst, 2016)

The value of 8, at point x € [a, b] can be estimated using a
(A=x)
202

In practice, E (||g§x)(5)z||2) is computed from the single



Example of application
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L

Empirical method
for model inference
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------ Theoretical spectrum function

° Estimation by KDE

15

—— Pol fit : deg=4; Res=0.005

e
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Figure: Estimation of the spectrum function of a stationary field
simulated on a 200x200 grid
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Likelihood-based method for model inference |

Problem

Given a realization of a S-stationary signal z, find its
spectrum function K, by a likelihood-based approach.

Suppose that 8, = 89 depends on a vector of parameters .
The log-likelihood associated to z and 8 is given by :

Model inference by
likelihood-based

method

£(z,0) =

(N log 27 + log det (82(S)) + ZTRZ(S)*12>

1
2

Use fast computation of graph filters technique to compute
efficiently determinant and inverse.
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Likelihood-based method for model inference 1l
We have :

0 . 1/82 (A1) ; 1
R(S) =V < > V' = E(S)
1/88 (An)

= Use polynomial approximation of %

Model inference by

likelihood-based And

method

=
L

log det (RZ(S)) = log(&2(Ak))
0

Approximate this sum using the histogram of eigenvalues

x
Il
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Determinant by histogram approx.

Definition

[a,b] D {A1,...,An}. For M € N (number of breaks) denote
T:% andap,=a+mr:me0,...M
Denote hist(am,) the count :

: : T T
or med) v hist(ap,) := Card {I efo,N—1]: \ €lam — 50 am T 5]}

likelihood-based

method

Proposition

log det ( ﬁo(S) Zhlst (am) log(8R(am))

hist(am) = E(Hl]am_ amt 2] (S)ell )
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Determinant by histogram approx. : Proof

The counts of the histogram can be obtained as follows :
N-1
hist(am) Z Yap5.0mt51(0) = D Lo 3.0m+51(N)°
i=0

Notice that if € is a white noise, its PSD is the vector

_ 1=(1,..,1)7. And therefore,
Model inference by
likelihood-based N—1

method
hist(am) = Z l]a,,,_g,am+g](>\i)2 X \1,_,
i=0 —E(22)

l]am—f am+7—](>‘1) &1
2
=E || ( : > |
Yam—3 am+351(AN)
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Determinant by histogram approx. : Proof

The counts of the histogram can be obtained as follows :
N-1
hist(am) Z Yap5.0mt51(0) = D Lo 3.0m+51(N)°
i=0

Notice that if € is a white noise, its PSD is the vector

_ 1=(1,..,1)7. And therefore,
Model inference by
likelihood-based N—1

method
hist(am) = Z l]am_g,a,,,+g]()\i)2 x \1,_,
i=0 =E(£2)
Yam—% .am+31(M)
-
—E (] Vie|?®
l]am—%,am‘*'%]()\,v)
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Determinant by histogram approx. : Proof

The counts of the histogram can be obtained as follows :
N-1
hist(am) Z Yap5.0mt51(0) = D Lo 3.0m+51(N)°
i=0

Notice that if € is a white noise, its PSD is the vector
1=(1,. )T And therefore,

hist(am) Z l]am am+§](>‘i)2 x 1
—=E(2)

Model inference by
likelihood-based

method

1]am77 3m+2](A1)
—E(|Vv vTe|?
Yam—% am+51(An)
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Determinant by histogram approx. : Proof

The counts of the histogram can be obtained as follows :
N-1
hist(am) Z Yap5.0mt51(0) = D Lo 3.0m+51(N)°
i=0

Notice that if € is a white noise, its PSD is the vector
1=(1,. )T And therefore,

hist(am) Z l]am am+§](>‘i)2 x 1
—=E(2)

Model inference by
likelihood-based

method

1]am77 3m+2](A1)
—E(|Vv vTe|?
Yam—% am+51(An)

Hence :

hist(am) — E(Hl]am;,am+;](s>au2)
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Example of application

Model inference by
likelihood-based

method

----- Theoretical spectrum function

——— Estimation by likelihood maximization (err = 0.002)

T T T T T
0.0 05 1.0 15 20

Figure: Estimation of the spectrum function of a stationary field
simulated on a 200x200 grid by likelihood-based approach (error =
integral of the squared difference)
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Random field definition

Problem

Given a random field z defined on a spatial domain as the
solution by finite elements of the following SPDE :

(1- div(H(s)V))a/ *2(s) = 20(s)

Compute a (non-conditional) simulation of z.

Efficient
simulation scheme
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Random field definition

Problem

Given a random field z defined on a spatial domain as the
solution by finite elements of the following SPDE :

(1- div(H(s)V))a/ *2(s) = 20(s)

Compute a (non-conditional) simulation of z.

Effident Finite Element method = Discretization of differential
operators.
The precision matrix of z can then be expressed using a
(much) sparser matrix M (see Lindgren et al. 2011):
P

Q=D b,MPD = Dp(M)D
p=0
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Simulation of random fields on large domains

P
Q=D b,MPD = Dp(M)D
p=0

Current solution

A simulation of z is then computed using a Cholesky
decomposition of Q :

ff 2= Q—1/2€

Efficient

SIS — Problem : Computing the Cholesky decomposition of Q is
untractable for large problems.
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Simulation of random fields on large domains

P
Q=D b,MPD = Dp(M)D
p=0

Current solution

A simulation of z is then computed using a Cholesky
decomposition of Q :

Efficient 2= Q_l/zs

SRS = Problem : Computing the Cholesky decomposition of Q is
untractable for large problems.

Proposed solution

Use fast filtering technique to compute matrix
-1/2 _ p-1 . 1
Q =D f(M)wheref.yHm— =
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Efficient simulation scheme

Non Conditional simulation of a Matern model (o« =2) on a
400x400 grid using Cholesky

B T R
- - ~ ‘M
L] ¥ ‘ﬁ; i -
Efficient L =™ %Hb» - L
simulation scheme d e " U', ¥ #
v R
¥ q&ﬁ " |
- —"'%u‘: ¢
* [ Y
- \ |
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Efficient simulation scheme

Non Conditional simulation of a Matern model (o« =2) on a
400x400 grid using Fast filtering

» ‘

&l

" = ‘ % i
| d ‘ % 4
Efficient & h 4 ‘. A
simulation scheme ) 9
. U
#
-

Ay
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Efficient simulation scheme

Non Conditional simulation of a Matern model (o« =4) on a
400x400 grid using Cholesky

Efficient
simulation scheme
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Efficient simulation scheme

Non Conditional simulation of a Matern model (o« =4) on a
400x400 grid using Fast filtering

Efficient
simulation scheme
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Efficient
simulation scheme

Pereira, Desassis

Efficient simulation scheme

Non Conditional simulation of an (varying) anisotropic

exponential model (o = 3/2) (top = ellipses of anisotropy,
bottom = field simulation).
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Efficient simulation scheme

Non Conditional simulation of an (varying) anisotropic

exponential model (o = 3/2) (top = ellipses of anisotropy,
bottom = field simulation).

Efficient
simulation scheme

Pereira, Desassis
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A Conclusion
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To come...

m Model inference when data are missing (data
augmentation/completion, EM algorithm) and signal
interpolation

m Work on spatio-temporal models for prediction.

0z
Ex : E—i—h(S)z—e

Conclusion
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Proof of the simulation process

Proof : Remark that . = I. Then if z = V/f(S)e, we have :
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Fast computation of graph filters : Proof

Sk —-88S.S=UAUTUAUT.. U AUT = UAKUT
=1 =1 =1

For a polynomial p : x — ag + a1 x + ... + amx™

p(A1)
p(A) = =apl +aA+...+a,A"

p(An))

Therefore
p(S) = Up(A)U" = aUIUT + 5UAUT + ... + a,UA™UT
=agl +a1S+ ...+ apS™ — polynomial
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Estimation of &, : Proof |

Pereira, Desassis

N-1
Z ()’ Rz Ce=>_ &)
k=0
IO e <Z ) )

£ () 2
g (w) 2
g9 (A1)
| ( ) VT22)
g ()

()
Iv VTz|2 | = (lgb(S)zI?)
g 0w)
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Estimation of £, : Proof |l

Notice that if € is a white noise, its PSD is the vector
1= (1 LT, And therefore

N-1
G = Zg ) (Ak)? Zg ) x 1= g (\)’E(£7)
k=0

gcf ()‘1)
-E ( ( ) €|2) ~E (lgt(S)el?)
g8 0w)

Then we have :
- E(1ePs)21P)
0 16 ()p)
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