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Graph : a mathematical de�nition

A graph G is a triplet (V, E ,W) where

V = set of N vertices of the graph.

E ⊆ V × V = set of edges. Adjacent vertices i and j are
denoted i ∼ j .

W : E 7→ R = symmetric weight function. Weight of
edge (i , j) is denoted wij = wji .

Work Hypothesis

Only undirected and loopless graphs are studied.

Pereira, Desassis Models and inference for random �elds indexed on undirected graphs 5 / 33



General notation
for graphs

Stationary signal
processing on
graphs

Computation of
graph �lters

Model Inference

Empirical method
for model inference

Model inference by
likelihood-based
method

E�cient
simulation scheme

Conclusion

Graph Signals

Graph signal

A graph signal is a vector of real values indexed by the
vertices of a graph.
It is said random when its values at the vertices are random.

Example : marketing interest for a new product among the
users of a social network.

Work Hypothesis

Only Gaussian random signals are considered.
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Shift operator

De�nition : Shift Operator

A shift operator S on graph G is a N × N matrix such that :

Sij 6= 0⇒ i = j ou i ∼ j

Proposition

For k ∈ N, S veri�es : [Sk ]ij 6= 0⇒ i = j or ∃ a chain of
vertices of length ≤ k between nodes i and j .
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Graph �lter

Work Hypothesis

S is symmetric : accordingly, it is diagonalizable on R.
Hence, denote λ1 ≤ ... ≤ λN its eigenvalues and V its
eigenbasis (VV T = V TV = I ) .

S = VΛV T with Λ =

(
λ1

. . .
λN

)

De�nition : Graph �lter

A graph �lter h(S) is a matrix de�ned from a function
h : R 7→ R by the relation :

h(S) := Vh(Λ)V T = V

(
h(λ1)

. . .
h(λN)

)
V T

Note : Only need to know h(λ1), ..., h(λN) to de�ne h(S)
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Stationarity on graphs

De�nition : Stationarity on graphs

A random graph signal z is said S-stationary if :

1. its mean is constant over V (denoted mz)

2. its covariance matrix Σz is a graph �lter for a function
Kz : R 7→ R+, called the spectrum function of z :

Σz := E{(z −mz)(z −mz)
T} = Kz(S)

Note

S-stationary signals with Kz of the form Kz(x) = (a0+ a1x)
−1

correspond to markov random �elds with precision matrix :

Q = a0I + a1S
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Simulation of stationary graph signals

Example : White noise

The graph white noise ε is the random signal whose
components are independent standard gaussian variables.

Proposition

To simulate a S-stationary signal z and with spectrum
function f : R→ R+ :

Generate a graph white noise ε

Compute z =
√
f(S)ε

Proof... Go

Problem

How to compute h(S)ε?

h(S)ε = Vh(Λ)V Tε

⇒ Diagonalization + Storage : Expensive!!
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Fast computation of graph �lters

Idea

Computing p(S) for a polynomial function p is feasible
without diagonalization! (Proof... Go )
For more general functions h : approximate h by a polynomial.

Work�ow

Find a polynomial approximation p of h s.t.

∀k ∈ [[1,N]], p(λk) ≈ h(λk)

Compute p(S) (matrix polynomial)

Take h(S) ≈ p(S) (same eigenbasis, similar eigenvalues)

⇒ Polynomial approximation of h on the interval [λmin, λmax]
using Chebyshev polynomials (fast by FFT)
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Empirical method for model inference

Notation

S a symmetric shift operator : S = VΛV T with :

λ1 ≤ ... ≤ λN its eigenvalues

S = V

(
λ1

. . .
λN

)
V T

z random S-stationary signal with :

Mean 0

Covariance matrix Σz = Kz(S) = VKz(Λ)V T

Problem

Given a realization of S-stationary signal z , �nd its spectrum
function Kz empirically.
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Power spectral density (PSD)

Proposition

The signal z̃ = V Tz of z has covariance matrix :

Σz̃ = V TΣzV = Kz(Λ) =

(
Kz (λ1)

. . .
Kz (λN)

)
The components of z̃ are independent random variables.

De�nition : Power spectral density

The power spectral density p̃z of z is the vector de�ned as :

p̃z := diag(V TΣzV ) = (Kz(λ1), ...,Kz(λN))
T

Its elements are (equivalently) :

the eigenvalues of the covariance matrix of z

the variance of the components of z̃ = V Tz :

Kz(λk) = Var(z̃k) = [Σz̃ ]kk = E(z̃2k )
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Estimation of Kz

Problem : How to estimate Kz?

Idea : Kernel Density Estimation of Kz over an interval
[a, b] ⊃ {λ1, ..., λN} (see Perraudin and Vandergheynst, 2016)

The value of Kz at point x ∈ [a, b] can be estimated using a

Gaussian kernel (centered at x), g
(x)
σ : λ 7→ exp

(
− (λ−x)2

2σ2

)
K̂z(x) =

E
(
‖g (x)
σ (S)z‖2

)
E
(
‖g (x)
σ (S)ε‖2

)
Where ‖.‖ is the Euclidean norm.
Proof... Go

In practice, E
(
‖g (x)
σ (S)z‖2

)
is computed from the single

realization of z that is known.
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Example of application

Figure: Estimation of the spectrum function of a stationary �eld
simulated on a 200x200 grid
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Likelihood-based method for model inference I

Problem

Given a realization of a S-stationary signal z , �nd its
spectrum function Kz by a likelihood-based approach.

Suppose that Kz = Kθz depends on a vector of parameters θ.
The log-likelihood associated to z and θ is given by :

L(z ,θ) = −1
2

(
N log 2π + log det

(
Kθz (S)

)
+ zTKθz (S)

−1z
)

Idea

Use fast computation of graph �lters technique to compute
e�ciently determinant and inverse.
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Likelihood-based method for model inference II

We have :

Kθz (S)
−1 = V

(
1/Kθ

z
(λ1)

. . .
1/Kθ

z
(λN)

)
V T =

1

Kθz
(S)

⇒ Use polynomial approximation of 1
Kθ
z

And

log det
(
Kθz (S)

)
=

N−1∑
k=0

log(Kθz (λk))

Idea

Approximate this sum using the histogram of eigenvalues
λ1, ..., λN .
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Determinant by histogram approx.

De�nition

[a, b] ⊃ {λ1, ..., λN}. For M ∈ N (number of breaks) denote
τ = b−a

M
and am = a +mτ : m ∈ 0, ...,M

Denote hist(am) the count :

hist(am) := Card
{
i ∈ [[0,N − 1]] : λi ∈]am −

τ

2
, am +

τ

2
]
}

Proposition

log det
(
Kθz (S)

)
≈

M∑
m=0

hist(am) log(K
θ
z (am))

Where :
hist(am) = E

(
||1]am− τ

2
,am+ τ

2
](S)ε||2

)
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Determinant by histogram approx. : Proof

The counts of the histogram can be obtained as follows :

hist(am) =
N−1∑
i=0

1]am− τ
2
,am+ τ

2
](λi ) =

N−1∑
i=0

1]am− τ
2
,am+ τ

2
](λi )

2

Notice that if ε is a white noise, its PSD is the vector
1 = (1, ..., 1)T . And therefore,

hist(am) =
N−1∑
i=0

1]am− τ
2
,am+ τ

2
](λi )

2 × 1︸︷︷︸
=E(ε̃2

i
)

= E

‖
 1]am− τ

2 ,am+ τ2 ](λ1)

. . .
1]am− τ

2 ,am+ τ2 ](λN)

( ε̃1
...
ε̃N

)
‖2

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
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Example of application

Figure: Estimation of the spectrum function of a stationary �eld
simulated on a 200x200 grid by likelihood-based approach (error =
integral of the squared di�erence)
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Random �eld de�nition

Problem

Given a random �eld z de�ned on a spatial domain as the
solution by �nite elements of the following SPDE :(

1− div
(
H(s)∇

))α/2
z(s) = W(s)

Compute a (non-conditional) simulation of z .

Finite Element method ⇒ Discretization of di�erential
operators.
The precision matrix of z can then be expressed using a
(much) sparser matrix M (see Lindgren et al. 2011):

Q = D

P∑
p=0

bpM
pD = Dp(M)D
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Simulation of random �elds on large domains

Q = D

P∑
p=0

bpM
pD = Dp(M)D

Current solution

A simulation of z is then computed using a Cholesky
decomposition of Q :

z = Q−1/2ε

⇒ Problem : Computing the Cholesky decomposition of Q is
untractable for large problems.

Proposed solution

Use fast �ltering technique to compute matrix
Q−1/2 = D−1f (M) where f : y 7→ 1√

p(y)
= 1√

P∑
p=0

bpyp
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E�cient simulation scheme

Non Conditional simulation of a Matern model (α = 2) on a
400x400 grid using Cholesky

Pereira, Desassis Models and inference for random �elds indexed on undirected graphs 27 / 33



General notation
for graphs

Stationary signal
processing on
graphs

Computation of
graph �lters

Model Inference

Empirical method
for model inference

Model inference by
likelihood-based
method

E�cient
simulation scheme

Conclusion

E�cient simulation scheme

Non Conditional simulation of a Matern model (α = 2) on a
400x400 grid using Fast �ltering

Pereira, Desassis Models and inference for random �elds indexed on undirected graphs 28 / 33



General notation
for graphs

Stationary signal
processing on
graphs

Computation of
graph �lters

Model Inference

Empirical method
for model inference

Model inference by
likelihood-based
method

E�cient
simulation scheme

Conclusion

E�cient simulation scheme

Non Conditional simulation of a Matern model (α = 4) on a
400x400 grid using Cholesky
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E�cient simulation scheme

Non Conditional simulation of an (varying) anisotropic
exponential model (α = 3/2) (top = ellipses of anisotropy,
bottom = �eld simulation).
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To come...

Model inference when data are missing (data
augmentation/completion, EM algorithm) and signal
interpolation

Work on spatio-temporal models for prediction.

Ex :
∂z

∂t
+ h(S)z = ε
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Thank you for your attention!
Questions?



Proof of the simulation process

Proof : Remark that Σε = I . Then if z =
√
f(S)ε, we have :

Σz =
√
f(S)I

√
f(S)T =

√
f(S)
√
f(S)T

= V

√f(λ1)

. . . √
f(λN)

V TV︸ ︷︷ ︸
=I

√f(λ1)

. . . √
f(λN)

V T

= V

√f(λ1)

. . . √
f(λN)

√f(λ1)

. . . √
f(λN)

V T

= V

√f(λ1)
2

. . . √
f(λN)

2

V T = V

(
f(λ1)

. . .
f(λN)

)
V T

= f(S)
Back
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Fast computation of graph �lters : Proof

Sk = SSS ...S = UΛUTU︸ ︷︷ ︸
=I

ΛUT .︸︷︷︸
=I

. .U︸︷︷︸
=I

ΛUT = UΛkUT

For a polynomial p : x 7→ a0 + a1x + ...+ amx
m

p(Λ) =

p(λ1)
. . .

p(λN))

 = a0I + a1Λ+ ...+ amΛ
m

Therefore

p(S) := Up(Λ)UT = a0UIU
T + a1UΛUT + ...+ amUΛmUT

= a0I + a1S + ...+ aPS
m → polynomial

Back

Pereira, Desassis Models and inference for random �elds indexed on undirected graphs 33 / 33



Estimation of Kz : Proof I

γ̂z(x) =
1

Cx

N−1∑
k=0

g (x)
σ (λk)

2Kz(λk); Cx =
N−1∑
k=0

g (x)
σ (λk)

2

N−1∑
k=0

g (x)
σ (λk)

2 Kz(λk)︸ ︷︷ ︸
=E(z̃2

k
)

= E

(
N−1∑
k=0

g (x)
σ (λk)

2z̃2k

)

= E

‖
 g

(x)
σ (λ1)

. . .
g
(x)
σ (λN)

( z̃1
...
z̃N

)
‖2


= E

‖
 g

(x)
σ (λ1)

. . .
g
(x)
σ (λN)

V Tz‖2


= E

‖V
 g

(x)
σ (λ1)

. . .
g
(x)
σ (λN)

V Tz‖2
 = E

(
‖g (x)
σ (S)z‖2

)
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Estimation of Kz : Proof II

Notice that if ε is a white noise, its PSD is the vector
1 = (1, ..., 1)T . And therefore,

Cx =
N−1∑
k=0

g (x)
σ (λk)

2 =
N−1∑
k=0

g (x)
σ (λk)

2 × 1 =
N−1∑
k=0

g (x)
σ (λk)

2E(ε̃2k)

= E

‖
 g

(x)
σ (λ1)

. . .
g
(x)
σ (λN)

 ε̃‖2
 = E

(
‖g (x)
σ (S)ε‖2

)
Then we have :

γ̂z(x) =
E
(
‖g (x)
σ (S)z‖2

)
E
(
‖g (x)
σ (S)ε‖2

)
Back
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