Models and inference for random fields indexed on undirected graphs

Mike PEREIRA ${ }^{1,2}$, Nicolas DESASSIS ${ }^{1}$

${ }^{1}$ Geostatistics team, MINES ParisTech, PSL Research University ${ }^{2}$ ESTIMAGES France

RESSTE Day

"Hierarchical Bayesian Models for spatio-temporal data"
May 16th, 2017

Introduction

General notation for graphs

Stationary signal processing on
graphs
Computation of graph filters

Model Inference Empirical method for model inference Model inference by Fikelhood-based method

Efficient
simulation scheme
Conclusion

Pereira, Desassis

Models and inference for random fields indexed on undirected graphs

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by Fikefhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference

■ Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by likeHhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference - Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Graph : a mathematical definition

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by fikefhood-based method
Efficient simulation scheme

Conclusion

A graph \mathcal{G} is a triplet $(\mathcal{V}, \mathcal{E}, \mathcal{W})$ where
$■ \mathcal{V}=$ set of N vertices of the graph.
■ $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}=$ set of edges. Adjacent vertices i and j are denoted $i \sim j$.
$\square \mathcal{W}: \mathcal{E} \mapsto \mathbb{R}=$ symmetric weight function. Weight of edge (i, j) is denoted $w_{i j}=w_{j i}$.

Work Hypothesis

Only undirected and loopless graphs are studied.

Graph Signals

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by fikefhood-based method

Efficient
simulation scheme
Conclusion

Graph signal

A graph signal is a vector of real values indexed by the vertices of a graph.
It is said random when its values at the vertices are random.
Example : marketing interest for a new product among the users of a social network.

Work Hypothesis

Only Gaussian random signals are considered.

Shift operator

General notation for graphs

Stationary signal processing on
graphs
Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by likelfhood-based method

Efficient simulation scheme

Conclusion

Definition: Shift Operator

A shift operator S on graph \mathcal{G} is a $N \times N$ matrix such that :

$$
S_{i j} \neq 0 \Rightarrow i=j \quad \text { ou } \quad i \sim j
$$

Proposition

For $k \in \mathbb{N}, \boldsymbol{S}$ verifies : $\left[S^{k}\right]_{i j} \neq 0 \Rightarrow i=j$ or \exists a chain of vertices of length $\leq k$ between nodes i and j.

Models and inference for random fields indexed on undirected graphs

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by likelhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference - Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Graph filter

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by fikefhood-based method
Efficient simulation scheme

Conclusion

Work Hypothesis

S is symmetric : accordingly, it is diagonalizable on \mathbb{R}. Hence, denote $\lambda_{1} \leq \ldots \leq \lambda_{N}$ its eigenvalues and \boldsymbol{V} its eigenbasis $\left(\boldsymbol{V} \boldsymbol{V}^{\top}=\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}\right)$.

$$
\boldsymbol{S}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{T} \text { with } \boldsymbol{\Lambda}=\left(\begin{array}{lll}
\lambda_{\mathbf{1}} & & \\
& \ddots & \\
& & \lambda_{N}
\end{array}\right)
$$

Definition: Graph filter

A graph filter $h(S)$ is a matrix defined from a function $\mathrm{h}: \mathbb{R} \mapsto \mathbb{R}$ by the relation :

$$
\mathrm{h}(\boldsymbol{S}):=\boldsymbol{V} \mathrm{h}(\boldsymbol{\Lambda}) \boldsymbol{V}^{T}=\boldsymbol{V}\left(\begin{array}{lll}
\mathrm{h}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathrm{h}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{T}
$$

Note: Only need to know $\mathrm{h}\left(\lambda_{1}\right), \ldots, \mathrm{h}\left(\lambda_{N}\right)$ to define $\mathrm{h}(\boldsymbol{S})$

Models and inference for random fields indexed on undirected graphs

Stationarity on graphs

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by Hikellhood-based method
Efficient
simulation scheme
Conclusion

Definition: Stationarity on graphs

A random graph signal z is said S-stationary if:

1. its mean is constant over \mathcal{V} (denoted m_{z})
2. its covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ is a graph filter for a function $\mathfrak{K}_{\boldsymbol{z}}: \mathbb{R} \mapsto \mathbb{R}_{+}$, called the spectrum function of z :

$$
\boldsymbol{\Sigma}_{\boldsymbol{z}}:=\mathbb{E}\left\{\left(z-m_{z}\right)\left(z-m_{z}\right)^{T}\right\}=\mathfrak{K}_{z}(S)
$$

Note

S-stationary signals with \mathfrak{K}_{z} of the form $\mathfrak{K}_{z}(x)=\left(a_{0}+a_{1} x\right)^{-1}$ correspond to markov random fields with precision matrix $Q=a_{0} I+a_{1} S$

Stationarity on graphs

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by Fikelfhood-based method
Efficient
simulation scheme
Conclusion

Definition: Stationarity on graphs

A random graph signal z is said S-stationary if:

1. its mean is constant over \mathcal{V} (denoted m_{z})
2. its covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}$ is a graph filter for a function $\mathfrak{K}_{\boldsymbol{z}}: \mathbb{R} \mapsto \mathbb{R}_{+}$, called the spectrum function of z :

$$
\boldsymbol{\Sigma}_{\boldsymbol{z}}:=\mathbb{E}\left\{\left(z-m_{z}\right)\left(z-m_{z}\right)^{T}\right\}=\mathfrak{K}_{\boldsymbol{z}}(S)
$$

Note

S-stationary signals with $\mathfrak{K}_{\boldsymbol{Z}}$ of the form $\mathfrak{K}_{\boldsymbol{z}}(x)=\left(a_{0}+a_{1} x\right)^{-1}$ correspond to markov random fields with precision matrix :

$$
\boldsymbol{Q}=a_{0} \boldsymbol{I}+a_{1} \boldsymbol{S}
$$

Simulation of stationary graph signals

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by fikelfhood-based method

Efficient
simulation scheme
Conclusion

Example: White noise
The graph white noise ε is the random signal whose components are independent standard gaussian variables.

```
Proposition
To simulate a S-stationary signal z and with spectrum
function f : \mathbb{R}->\mathbb{R}+
    - Generate a graph white noise }
    - Compute }\boldsymbol{z}=\sqrt{}{f}(S)
```

Proof.
Problem
How to compute $\mathrm{h}(\mathrm{S}) \varepsilon$?
Diagonalization + Storage : Expensive!!

Models and inference for random fields indexed on undirected graphs

Simulation of stationary graph signals

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by Fikelhood-based method

Efficient
simulation scheme
Conclusion

Example: White noise

The graph white noise ε is the random signal whose components are independent standard gaussian variables.

Proposition

To simulate a S-stationary signal z and with spectrum function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}_{+}$:

- Generate a graph white noise ε
- Compute $\boldsymbol{z}=\sqrt{\mathrm{f}}(\boldsymbol{S}) \varepsilon$

Proof...

Problem

How to compute $h(S) \varepsilon$?

Diagonalization + Storage : Expensive!!

Models and inference for random fields indexed on undirected graphs

Simulation of stationary graph signals

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by Hkefhood-based method
Efficient simulation scheme

Conclusion

Example: White noise

The graph white noise ε is the random signal whose components are independent standard gaussian variables.

Proposition

To simulate a S-stationary signal z and with spectrum function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}_{+}$:

- Generate a graph white noise ε
- Compute $z=\sqrt{\mathrm{f}}(\boldsymbol{S}) \varepsilon$

Proof...

```
Go
```


Problem

How to compute $\mathrm{h}(\boldsymbol{S}) \varepsilon$?

$$
\mathrm{h}(\boldsymbol{S}) \varepsilon=\boldsymbol{V} \mathrm{h}(\boldsymbol{\Lambda}) \boldsymbol{V}^{\top} \boldsymbol{\varepsilon}
$$

\Rightarrow Diagonalization + Storage : Expensive!!

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by Fikefhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference - Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Fast computation of graph filters

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by fikefhood-based method
Efficient simulation scheme

Conclusion

Idea

Computing $\mathrm{p}(\boldsymbol{S})$ for a polynomial function p is feasible without diagonalization! (Proof... Go)
For more general functions h : approximate h by a polynomial.

Workflow

- Find a polynomial approximation p of h s.t.

$$
\forall k \in \llbracket 1, N \rrbracket, \mathrm{p}\left(\lambda_{k}\right) \approx \mathrm{h}\left(\lambda_{k}\right)
$$

- Compute $\mathrm{p}(\boldsymbol{S})$ (matrix polynomial)
- Take $\mathrm{h}(\boldsymbol{S}) \approx \mathrm{p}(\boldsymbol{S})$ (same eigenbasis, similar eigenvalues)
\Rightarrow Polynomial approximation of h on the interval $\left[\lambda_{\min }, \lambda_{\max }\right]$ using Chebyshev polynomials (fast by FFT)

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Fikellhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference

■ Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Empirical method for model inference

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by Ifkefhood-based method
Efficient simulation scheme

Conclusion

Notation

\boldsymbol{S} a symmetric shift operator: $\boldsymbol{S}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\boldsymbol{T}}$ with :

- $\lambda_{1} \leq \ldots \leq \lambda_{N}$ its eigenvalues

■ $\boldsymbol{S}=\boldsymbol{V}\left(\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{N}\end{array}\right) \boldsymbol{V}^{\boldsymbol{T}}$
z random S-stationary signal with :

- Mean 0

■ Covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{z}}=\mathfrak{K}_{\boldsymbol{z}}(\boldsymbol{S})=\boldsymbol{V} \mathfrak{K}_{\boldsymbol{z}}(\boldsymbol{\Lambda}) \boldsymbol{V}^{\top}$

Problem

Given a realization of S-stationary signal z, find its spectrum function $\mathfrak{K}_{\mathbf{z}}$ empirically.

Power spectral density (PSD)

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Fikefhood-based method

Efficient simulation scheme

Conclusion

Proposition

The signal $\tilde{z}=\boldsymbol{V}^{T} \boldsymbol{z}$ of \boldsymbol{z} has covariance matrix :

$$
\boldsymbol{\Sigma}_{\tilde{\boldsymbol{z}}}=\boldsymbol{V}^{T} \boldsymbol{\Sigma}_{\boldsymbol{z}} \boldsymbol{V}=\mathfrak{K}_{\boldsymbol{z}}(\boldsymbol{\Lambda})=\left(\begin{array}{lll}
\mathfrak{K}_{\mathbf{z}}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathfrak{K}_{\mathbf{z}}\left(\lambda_{N}\right)
\end{array}\right)
$$

The components of \tilde{z} are independent random variables.

Definition: Power spectral density

The power spectral density $\tilde{\boldsymbol{p}}_{\boldsymbol{z}}$ of \boldsymbol{z} is the vector defined as:

$$
\tilde{\boldsymbol{p}}_{\boldsymbol{z}}:=\operatorname{diag}\left(\boldsymbol{V}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{z}} \boldsymbol{V}\right)=\left(\mathfrak{K}_{\boldsymbol{z}}\left(\lambda_{1}\right), \ldots, \mathfrak{K}_{\boldsymbol{z}}\left(\lambda_{N}\right)\right)^{T}
$$

Its elements are (equivalently):

- the eigenvalues of the covariance matrix of z
- the variance of the components of $\tilde{\boldsymbol{z}}=\boldsymbol{V}^{\top} \boldsymbol{z}$:

$$
\mathfrak{K}_{z}\left(\lambda_{k}\right)=\operatorname{Var}\left(\tilde{z}_{k}\right)=\left[\Sigma_{\tilde{z}}\right]_{k k}=\mathbb{E}\left(\tilde{z}_{k}^{2}\right)
$$

Estimation of $\mathfrak{K}_{\mathbf{z}}$

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Fkelihood-based method

Efficient
simulation scheme
Conclusion

Problem : How to estimate $\mathfrak{K}_{\mathbf{z}}$?

Idea : Kernel Density Estimation of $\mathfrak{K}_{\boldsymbol{z}}$ over an interval $[a, b] \supset\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$ (see Perraudin and Vandergheynst, 2016)

The value of \mathfrak{K}_{z} at point $x \in[a, b]$ can be estimated using a Gaussian kernel (centered at $x), g_{\sigma}^{(x)}: \lambda \mapsto \exp \left(-\frac{(\lambda-x)^{2}}{2 \sigma^{2}}\right)$

$$
\widehat{\mathfrak{K}}_{\boldsymbol{z}}(x)=\frac{\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) z\right\|^{2}\right)}{\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) \varepsilon\right\|^{2}\right)}
$$

Where $\|$.$\| is the Euclidean norm.$
Proof... Go
In practice, $\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) z\right\|^{2}\right)$ is computed from the single realization of z that is known.

Example of application

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Fikefhood-based method

Efficient
simulation scheme
Conclusion

Figure: Estimation of the spectrum function of a stationary field simulated on a 200×200 grid

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Hke|Fhood-based method

Efficient
simulation scheme
Conclusion

Problem

Given a realization of a S-stationary signal z, find its spectrum function $\mathfrak{K}_{\boldsymbol{z}}$ by a likelihood-based approach.

Suppose that $\mathfrak{K}_{\boldsymbol{z}}=\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}$ depends on a vector of parameters $\boldsymbol{\theta}$. The log-likelihood associated to \boldsymbol{z} and $\boldsymbol{\theta}$ is given by :

$$
\mathfrak{L}(z, \boldsymbol{\theta})=-\frac{1}{2}\left(N \log 2 \pi+\log \operatorname{det}\left(\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}(\boldsymbol{S})\right)+\boldsymbol{z}^{\top} \mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}(\boldsymbol{S})^{-1} \boldsymbol{z}\right)
$$

Idea

Use fast computation of graph filters technique to compute efficiently determinant and inverse.

Likelihood-based method for model inference II

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by |likefhood-based method
Efficient
simulation scheme
Conclusion

We have :

$$
\mathfrak{K}_{z}^{\theta}(S)^{-1}=\boldsymbol{V}\left(\begin{array}{lll}
1 / \mathfrak{K}_{Z}^{\theta}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & 1 / \mathfrak{K}_{z}^{\theta}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{T}=\frac{1}{\mathfrak{K}_{z}^{\theta}}(\boldsymbol{S})
$$

\Rightarrow Use polynomial approximation of $\frac{1}{\mathfrak{K}_{z}^{\theta}}$
And

$$
\log \operatorname{det}\left(\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}(\boldsymbol{S})\right)=\sum_{k=0}^{N-1} \log \left(\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}\left(\lambda_{k}\right)\right)
$$

Idea

Approximate this sum using the histogram of eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$.

Determinant by histogram approx.

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by Hkefhood-based method

Efficient

simulation scheme
Conclusion

$$
\log \operatorname{det}\left(\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}(S)\right) \approx \sum_{m=0}^{M} \operatorname{hist}\left(a_{m}\right) \log \left(\mathfrak{K}_{\boldsymbol{z}}^{\boldsymbol{\theta}}\left(a_{m}\right)\right)
$$

Where :

$$
\left.\operatorname{hist}\left(a_{m}\right)=\mathbb{E}\left(\| \mathbf{1}_{\left.\mathbf{a}_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]} \mathbf{S}\right) \varepsilon \|^{2}\right)
$$

Determinant by histogram approx. : Proof

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by |lkefhood-based method

Efficient simulation scheme

Conclusion
The counts of the histogram can be obtained as follows:

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{] a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{]_{\left.a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2}\right) .}
$$

Notice that if ε is a white noise, its PSD is the vector $\mathbf{1}=(1, \ldots, 1)^{T}$. And therefore,

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{\left.a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2} \times \underbrace{1}_{=\mathbb{E}\left(\tilde{\varepsilon}_{i}^{2}\right)}
$$

$$
=\mathbb{E}\left(\left\|\left(\begin{array}{lll}
\mathbf{1}_{]_{\left.a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{1}\right)} & & \\
& \ddots & \\
& & \mathbf{1}_{]_{\left.a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{N}\right)}
\end{array}\right)\left(\begin{array}{c}
\tilde{\varepsilon}_{1} \\
\vdots \\
\\
\\
\tilde{\varepsilon}_{N}
\end{array}\right)\right\|^{2}\right)
$$

Determinant by histogram approx. : Proof

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by FikeHhood-based method

Efficient
simulation scheme
Conclusion

The counts of the histogram can be obtained as follows:

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{] a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{] a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2}
$$

Notice that if ε is a white noise, its PSD is the vector $\mathbf{1}=(1, \ldots, 1)^{T}$. And therefore,

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{] a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2} \times \underbrace{1}_{=\mathbb{E}\left(\tilde{\varepsilon}_{i}^{2}\right)}
$$

$$
=\mathbb{E}\left(\left\|\left(\begin{array}{lll}
\mathbf{1}_{\left.\mathrm{la}_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathbf{1}_{\left.\mathrm{a}_{\boldsymbol{m}}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{T} \varepsilon\right\|^{2}\right)
$$

Determinant by histogram approx. : Proof

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method for model inference Model inference by |kelfhood-based method

Efficient simulation scheme

Conclusion

The counts of the histogram can be obtained as follows:

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{\left.\mathrm{l}_{a_{m}}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{\left.\mathrm{a}_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2}
$$

Notice that if ε is a white noise, its PSD is the vector $\mathbf{1}=(1, \ldots, 1)^{T}$. And therefore,

$$
\operatorname{hist}\left(a_{m}\right)=\sum_{i=0}^{N-1} \mathbf{1}_{] a_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{i}\right)^{2} \times \underbrace{1}_{=\mathbb{E}\left(\tilde{\varepsilon}_{i}^{2}\right)}
$$

$$
=\mathbb{E}\left(\left\|\boldsymbol{V}\left(\begin{array}{lll}
\mathbf{1}_{\left.\mathrm{a}_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathbf{1}_{\left.\mathrm{la}_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{\top} \varepsilon\right\|^{2}\right)
$$

Hence
$\operatorname{hist}\left(a_{m}\right)=\mathbb{E}\left(\left\|\mathbf{1}_{\left.]_{m}-\frac{\tau}{2}, a_{m}+\frac{\tau}{2}\right]}(\mathrm{S}) \varepsilon\right\|^{2}\right)$

Determinant by histogram approx. : Proof

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference Model inference by ikefhood-based method

Efficient simulation scheme

Conclusion

Example of application

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by Akelhood-based method

Efficient
simulation scheme
Conclusion

Figure: Estimation of the spectrum function of a stationary field simulated on a 200×200 grid by likelihood-based approach (error $=$ integral of the squared difference)

Outline

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by fikellhood-based method

Efficient

simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference - Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

Random field definition

General notation
for graphs
Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by fikeHhood-based method

Efficient

simulation scheme
Conclusion

Problem

Given a random field z defined on a spatial domain as the solution by finite elements of the following SPDE :

$$
(1-\operatorname{div}(\boldsymbol{H}(s) \nabla))^{\alpha / 2} \boldsymbol{z}(s)=\mathfrak{W}(s)
$$

Compute a (non-conditional) simulation of z.
Finite Element method \Rightarrow Discretization of differential operators.
The precision matrix of z can then be expressed using a (much) sparser matrix M (see Lindgren et al. 2011):

Random field definition

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by fikelfhood-based method

Efficient
simulation scheme

Problem

Given a random field z defined on a spatial domain as the solution by finite elements of the following SPDE :

$$
(1-\operatorname{div}(\boldsymbol{H}(s) \nabla))^{\alpha / 2} \boldsymbol{z}(s)=\mathfrak{W}(s)
$$

Compute a (non-conditional) simulation of z.
Finite Element method \Rightarrow Discretization of differential operators.
The precision matrix of z can then be expressed using a (much) sparser matrix M (see Lindgren et al. 2011):

$$
\boldsymbol{Q}=\boldsymbol{D} \sum_{p=0}^{P} b_{p} \boldsymbol{M}^{p} \boldsymbol{D}=\boldsymbol{D} p(\boldsymbol{M}) \boldsymbol{D}
$$

Simulation of random fields on large domains

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by Hkefhood-based method

Efficient
simulation scheme
Conclusion

$$
\boldsymbol{Q}=\boldsymbol{D} \sum_{p=0}^{P} b_{p} \boldsymbol{M}^{p} \boldsymbol{D}=\boldsymbol{D} \mathrm{p}(\boldsymbol{M}) \boldsymbol{D}
$$

Current solution

A simulation of z is then computed using a Cholesky decomposition of Q :

$$
z=Q^{-1 / 2} \varepsilon
$$

\Rightarrow Problem: Computing the Cholesky decomposition of \boldsymbol{Q} is untractable for large problems.

Simulation of random fields on large domains

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by |likelfhood-based method

Efficient
simulation scheme
Conclusion

$$
\boldsymbol{Q}=\boldsymbol{D} \sum_{p=0}^{P} b_{p} \boldsymbol{M}^{p} \boldsymbol{D}=\boldsymbol{D} \mathrm{p}(\boldsymbol{M}) \boldsymbol{D}
$$

Current solution

A simulation of z is then computed using a Cholesky decomposition of Q :

$$
z=Q^{-1 / 2} \varepsilon
$$

\Rightarrow Problem: Computing the Cholesky decomposition of \boldsymbol{Q} is untractable for large problems.

Proposed solution

Use fast filtering technique to compute matrix $Q^{-1 / 2}=D^{-1} f(M)$ where $f: y \mapsto \frac{1}{\sqrt{p(y)}}=\frac{1}{\sqrt{\sum_{p=0}^{P} b_{p} y^{p}}}$

Efficient simulation scheme

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by fikeHhood-based method

Efficient

simulation scheme
Conclusion

MINES
Parislech
a, Desassis

Non Conditional simulation of a Matern model $(\alpha=2)$ on a 400×400 grid using Cholesky

Models and inference for random fields indexed on undirected graphs

Efficient simulation scheme

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by fikefhood-based method

Efficient

simulation scheme Conclusion

Non Conditional simulation of a Matern model $(\alpha=2)$ on a 400×400 grid using Fast filtering

Models and inference for random fields indexed on undirected graphs

Efficient simulation scheme

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by likeHhood-based method

Efficient

simulation scheme

Non Conditional simulation of a Matern model $(\alpha=4)$ on a 400×400 grid using Cholesky

Models and inference for random fields indexed on undirected graphs

Efficient simulation scheme

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by fikefhood-based method

Efficient

simulation scheme
Conclusion

MINES
Parislech
Pereira, Desassis

Non Conditional simulation of a Matern model $(\alpha=4)$ on a 400×400 grid using Fast filtering

Models and inference for random fields indexed on undirected graphs

Efficient simulation scheme

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by Fikelhood-based method

Efficient

simulation scheme
Conclusion

Non Conditional simulation of an (varying) anisotropic exponential model ($\alpha=3 / 2$) (top $=$ ellipses of anisotropy, bottom $=$ field simulation).

Efficient simulation scheme

General notation

 for graphsStationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by FikeHhood-based method

Efficient

simulation scheme

Non Conditional simulation of an (varying) anisotropic exponential model $(\alpha=3 / 2)$ (top $=$ ellipses of anisotropy, bottom $=$ field simulation $)$.

Models and inference for random fields indexed on undirected graphs

Outline

General notation for graphs
Stationary signal processing on graphs

Computation of graph filters

Model Inference Empirical method for model inference Model inference by Fikellhood-based method

Efficient
simulation scheme
Conclusion

1 General notation for graphs

2 Stationary signal processing on graphs

3 Computation of graph filters

4 Model Inference

- Empirical method for model inference ■ Model inference by likelihood-based method

5 Efficient simulation scheme

6 Conclusion

General notation for graphs

Stationary signal processing on graphs

Computation of graph filters

Model Inference
Empirical method
for model inference
Model inference by
likelfhood-based method

Efficient
simulation scheme
Conclusion

- Model inference when data are missing (data augmentation/completion, EM algorithm) and signal interpolation
- Work on spatio-temporal models for prediction.

$$
\mathrm{Ex}: \frac{\partial z}{\partial t}+\mathrm{h}(\boldsymbol{S}) z=\varepsilon
$$

Thank you for your attention! Questions?

ESTIMAGES
 Decide with data

Proof of the simulation process

Proof : Remark that $\boldsymbol{\Sigma}_{\boldsymbol{\varepsilon}}=\boldsymbol{I}$. Then if $\boldsymbol{z}=\sqrt{\mathrm{f}}(\boldsymbol{S}) \varepsilon$, we have :

$$
\boldsymbol{\Sigma}_{\mathbf{z}}=\sqrt{\mathrm{f}}(\boldsymbol{S}) \boldsymbol{I} \sqrt{\mathrm{f}}(\boldsymbol{S})^{T}=\sqrt{\mathrm{f}}(\boldsymbol{S}) \sqrt{\mathrm{f}}(\boldsymbol{S})^{T}
$$

$$
=\boldsymbol{V}\left(\begin{array}{ccc}
\sqrt{\sqrt{f\left(\lambda_{1}\right)}} & & \\
& \ddots & \\
& & \sqrt{f\left(\lambda_{N}\right)}
\end{array}\right) \underbrace{\boldsymbol{V}^{\top} \boldsymbol{V}}_{=1}\left(\begin{array}{ccc}
\sqrt{\sqrt{f\left(\lambda_{1}\right)}} & & \\
& \ddots & \\
& & \sqrt{f\left(\lambda_{N}\right)}
\end{array}\right) \boldsymbol{V}^{\top}
$$

$$
=\boldsymbol{V}\left(\begin{array}{ccc}
\sqrt{\sqrt{f}\left(\lambda_{1}\right)} & & \\
& \ddots & \\
& & \sqrt{f\left(\lambda_{N}\right)}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\sqrt{f}\left(\lambda_{1}\right)} & & \\
& \ddots & \\
& & \sqrt{f\left(\lambda_{N}\right)}
\end{array}\right) \boldsymbol{V}^{T}
$$

$$
=V\left(\begin{array}{lll}
\sqrt{\sqrt{ }\left(\lambda_{1}\right)^{2}} & & \\
& \ddots & \\
& & \sqrt{\mathrm{f}\left(\lambda_{N}\right)^{2}}
\end{array}\right) \boldsymbol{V}^{T}=\boldsymbol{V}\left(\begin{array}{lll}
\mathrm{f}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \mathrm{f}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{T}
$$

$$
=\mathrm{f}(\boldsymbol{S})
$$

$$
S^{k}=S S S \ldots S=U \Lambda \underbrace{U^{T} \boldsymbol{U}}_{=l} \Lambda \underbrace{U^{T}}_{=l} \cdot \underbrace{U}_{=l} \Lambda U^{T}=U \Lambda^{k} U^{T}
$$

For a polynomial $\mathrm{p}: x \mapsto a_{0}+a_{1} x+\ldots+a_{m} x^{m}$

$$
\mathrm{p}(\boldsymbol{\Lambda})=\left(\begin{array}{ccc}
\mathrm{p}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \left.\mathrm{p}\left(\lambda_{N}\right)\right)
\end{array}\right)=a_{0} \boldsymbol{I}+a_{1} \boldsymbol{\Lambda}+\ldots+a_{m} \boldsymbol{\Lambda}^{m}
$$

Therefore

$$
\begin{aligned}
\mathrm{p}(\boldsymbol{S}):=\boldsymbol{U} \mathrm{p}(\boldsymbol{\Lambda}) \boldsymbol{U}^{T} & =a_{0} \boldsymbol{U} \boldsymbol{I} \boldsymbol{U}^{T}+a_{1} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}+\ldots+a_{m} \boldsymbol{U} \boldsymbol{\Lambda}^{m} \boldsymbol{U}^{T} \\
& =a_{0} \boldsymbol{I}+a_{1} \boldsymbol{S}+\ldots+a_{p} \boldsymbol{S}^{m} \rightarrow \text { polynomial }
\end{aligned}
$$

Estimation of $\mathfrak{K}_{\boldsymbol{z}}$: Proof I

$$
\begin{aligned}
& \widehat{\gamma}_{\mathbf{z}}(x)=\frac{1}{C_{x}} \sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \mathfrak{K}_{\mathbf{z}}\left(\lambda_{k}\right) ; \quad C_{x}=\sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \\
& \sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \underbrace{\mathfrak{K}_{z}\left(\lambda_{k}\right)}_{=\mathbb{E}\left(\tilde{z}_{k}^{2}\right)}=\mathbb{E}\left(\sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \tilde{z}_{k}^{2}\right) \\
& =\mathbb{E}\left(\left\|\left(\begin{array}{ccc}
g_{\sigma}^{(x)}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & g_{\sigma}^{(x)}\left(\lambda_{N}\right)
\end{array}\right)\left(\begin{array}{c}
\tilde{z}_{1} \\
\vdots \\
\tilde{z}_{N}
\end{array}\right)\right\|^{2}\right) \\
& =\mathbb{E}\left(\left\|\left(\begin{array}{lll}
g_{\sigma}^{(x)}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & g_{\sigma}^{(x)}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{v}^{\top} \boldsymbol{z}\right\|^{2}\right) \\
& =\mathbb{E}\left(\left\|\boldsymbol{V}\left(\begin{array}{lll}
g_{\sigma}^{(x)}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & g_{\sigma}^{(x)}\left(\lambda_{N}\right)
\end{array}\right) \boldsymbol{V}^{T} \boldsymbol{z}\right\|^{2}\right)=\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(\boldsymbol{S}) \boldsymbol{z}\right\|^{2}\right)
\end{aligned}
$$

Estimation of $\mathfrak{K}_{\mathbf{z}}$: Proof II

Notice that if ε is a white noise, its PSD is the vector $\mathbf{1}=(1, \ldots, 1)^{T}$. And therefore,

$$
\begin{aligned}
C_{x} & =\sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2}=\sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \times 1=\sum_{k=0}^{N-1} g_{\sigma}^{(x)}\left(\lambda_{k}\right)^{2} \mathbb{E}\left(\tilde{\varepsilon}_{k}^{2}\right) \\
& =\mathbb{E}\left(\left\|\left(\begin{array}{lll}
g_{\sigma}^{(x)}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& g_{\sigma}^{(x)}\left(\lambda_{N}\right)
\end{array}\right) \tilde{\varepsilon}\right\|^{2}\right)=\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) \varepsilon\right\|^{2}\right)
\end{aligned}
$$

Then we have :

$$
\widehat{\gamma}_{z}(x)=\frac{\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) z\right\|^{2}\right)}{\mathbb{E}\left(\left\|g_{\sigma}^{(x)}(S) \varepsilon\right\|^{2}\right)}
$$

