A Bayesian model for joint unmixing, clustering and classification of hyperspectral data

Adrien Lagrange Ph.D. student at IRIT/INP-ENSEEIHT

Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Séminaire RESSTE - May 16th, 2017

Context		Conclusions and perspectives
		0

Context

Hyperspectral imaging Objective

Model

Spectral unmixing Clustering Classification

Experiments

Synthetic data Real data

Conclusions and perspectives

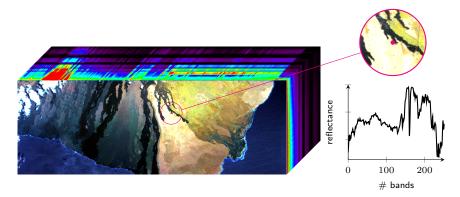
agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Context		
000000		

Nature of an hyperspectral image

A remote sensing hyperspectral image is:

- \blacksquare same area at different wavelength \rightarrow hundreds of measurements per pixel,
- poor spatial resolution due to sensor limitations, e.g., resolution around 10x10m per pixel for aerial applications



agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES

Context		
000000		
Hyperspectral imaging		

Hyperspectral image interpretation

Spectral unmixing

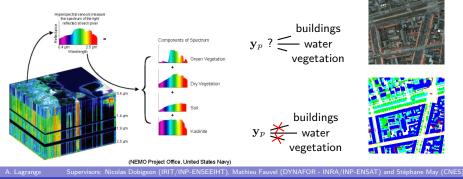
 $\mathbf{y}_p \approx \mathbf{M} \mathbf{a}_p$

- y_p: p-th observation
- M: endmember matrix (spectra of elementary components)
- **a**_p: p-th abundance vector

CLASSIFICATION

Maximum a posteriori (MAP) rule:

$$\begin{split} \mathbf{y}_p \text{ belongs to } j &\Leftrightarrow j = \arg\max_{j \in \mathcal{J}} p(j|\mathbf{y}_p), \\ &\Leftrightarrow j = \arg\max_{j \in \mathcal{J}} p(j) p(\mathbf{y}_p|j). \end{split}$$

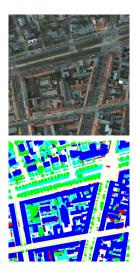


Context		
000000		
Hyperspectral imaging		

Classification

Some key issues in classification:

- Curse of dimensionality
- Cost of expert groundtruth
- Label noise in training set
- Multimodal classes (intraclass variability)

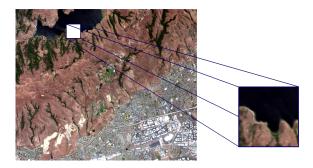


Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Context		
000000		
Hyperspectral imaging		

Spectral unmixing One illustrative example

- Image: 50×50 pixels (Moffett field), L = 224 bands,
- 3 materials: vegetation, water, soil.



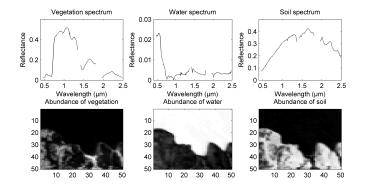
Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Context		
0000000		
Hyperspectral imaging		

Spectral unmixing

One illustrative example

- Image: 50×50 pixels (Moffett field), L = 224 bands,
- 3 materials: vegetation, water, soil.



agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Context		Conclusions and perspectives
0000000		

Spectral unmixing

A matrix factorization, latent factor modeling or blind source separation problem: $\mathbf{Y}\approx\mathbf{M}\mathbf{A}$

- 1. Principal Component Analysis (PCA)
 - Searching for orthogonal "principal components" (PCs) m_r,
 - PCs = directions with maximal variance in the data,
 - Generally used as a dimension reduction procedure.
- 2. Independent Component Analysis (ICA) (of \mathbf{Y}^T)
 - Maximizing the statistical independence between the sources \mathbf{m}_r ,
 - Several measures of independence \Rightarrow several algorithms.
- 3. Nonnegative Matrix Factorization (NMF)
 - Searching for M et A with positive entries,
 - Several measures of divergence $d(\cdot|\cdot) \Rightarrow$ several algorithms.
- 4. (Fully Constrained) Spectral Mixture Analysis (SMA)
 - Positivity constraints on $\mathbf{m}_r \Rightarrow$ positive "sources"
 - Positivity and sum-to-one constraints on a_r
 - \Rightarrow mixing coefficients = proportions/concentrations/probabilities.

Context		
000000		
Objective		

Objective

Spectral unmixing	Classification
Low-level biophysical information	High-level semantic information
Abundance vector per pixel	Unique label per pixel
Unsupervised	Supervised

 \implies Scarcely considered jointly.

Objective

Propose a **unified framework** to estimate jointly a classification map and a spectral unmixing from an hyperspectral image.

. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Model	

Context

Hyperspectral imaging Objective

Model

Spectral unmixing Clustering Classification

Synthetic data

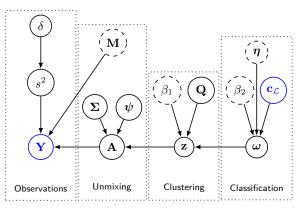
Conclusions and perspectives

agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Model	Conclusions and perspectives
0000000000	0

Bayesian model

- conventional linear mixing model;
- clustering of homogeneous abundance vectors;
- classification with a non-homogeneous Markov random field (MRF) to promote coherence between cluster and class labels.

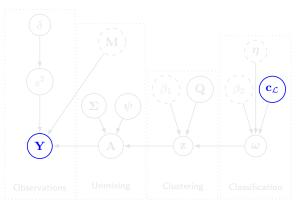


_agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

Model	Conclusions and perspectives
0000000000	0

Bayesian model

- conventional linear mixing model;
- clustering of homogeneous abundance vectors;
- classification with a non-homogeneous Markov random field (MRF) to promote coherence between cluster and class labels.



Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000000000	
Spectral unmixing		

Linear Mixture Model (1)

Linear combination of elementary signatures corrupted by an additive Gaussian noise

 $\mathbf{y}_p = \mathbf{M}\mathbf{a}_p + \mathbf{n}_p$

with

- **y**_p: observation
- M: endmember matrix (spectra of elementary components)
- **a**_p: abundance vector
- **n** $_p$: noise

	Model	
	0000000000	
Spectral unmixing		

Linear Mixture Model (2)

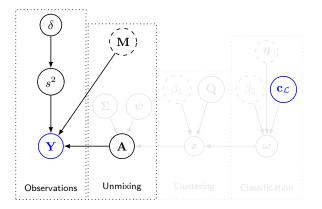
Noise prior modeling

$$\begin{split} \mathbf{n}_{p} | s^{2} &\sim \mathcal{N}(\mathbf{0}_{D}, s^{2} \mathbf{I}_{D}), \\ s^{2} | \delta &\sim \mathcal{IG}(1, \delta), \quad p(\delta | s^{2}) \propto \frac{1}{\delta} \mathbb{1}_{\mathbb{R}^{+}}(\delta). \end{split}$$

Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000000000	
Spectral unmixing		

Hierarchical model



.agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000 0000 000	
Clustering		

Clustering (1)

Assumption: several unknown spectrally coherent clusters with statistically homogeneous abundance vectors, $\forall k \in \{1, ..., K\}$,

$$\mathbf{a}_p | z_p = k, \boldsymbol{\psi}_k, \boldsymbol{\Sigma}_k \sim \mathcal{N}(\boldsymbol{\psi}_k, \boldsymbol{\Sigma}_k)$$
 with $\boldsymbol{\Sigma}_k = \mathsf{diag}(\sigma_{k,1}, \dots, \sigma_{k,R})$

where z_1, \ldots, z_p are discrete labels identifying the belonging to the clusters.

Vague priors for cluster parameters:

	Model	
	0000 0000 000	
Clustering		

Clustering (1)

Assumption: several unknown spectrally coherent clusters with statistically homogeneous abundance vectors, $\forall k \in \{1, ..., K\}$,

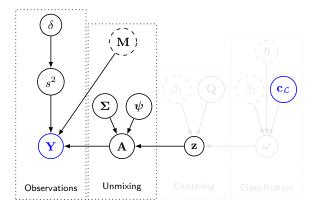
$$\mathbf{a}_p|z_p = k, \boldsymbol{\psi}_k, \boldsymbol{\Sigma}_k \sim \mathcal{N}(\boldsymbol{\psi}_k, \boldsymbol{\Sigma}_k)$$
 with $\boldsymbol{\Sigma}_k = \mathsf{diag}(\sigma_{k,1}, \dots, \sigma_{k,R})$

where z_1, \ldots, z_p are discrete labels identifying the belonging to the clusters.

- Vague priors for cluster parameters:
 - ▶ $\psi_k \sim \text{Dir}(1)$ → ensures nonnegativity and sum-to-one constraints of $\text{E}[\mathbf{a}_p|z_p = k]$ (soft constraints on \mathbf{a}_p)
 ▶ $\sigma_{k,r} \sim \mathcal{IG}(1, 0.1)$

	Model	
	00000000000	
Clustering		

Hierarchical model



.agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	00000000000	
Clustering		

Clustering (2)

Clustering with a non-homegeneous Markov random field

$$\mathbf{P}[z_p = k | \mathbf{z}_{\mathcal{V}(p)}, \omega_p, q_{k,\omega_p}] \propto \exp\left(V_1(k, \omega_p, q_{k,\omega_p}) + \sum_{p' \in \mathcal{V}(p)} V_2(k, z_{p'})\right)$$

with $\mathcal{V}(p)$ neighborhood of p, ω_p classification label of p.

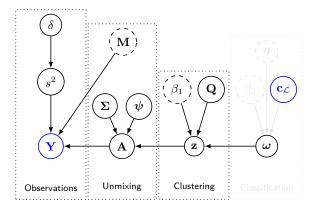
Two potentials:

- To promote coherence with classification $\rightarrow V_1(k, j, q_{k,j}) = \log(q_{k,j});$
- To promote spatial coherence (Potts-Markov potential) $\rightarrow V_2(k, z_{p'}) = \beta_1 \delta(k, z_{p'})$ with $\delta(\cdot, \cdot)$ Kronecker function.

N. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000 0000 0000	
Clustering		

Hierarchical model



.agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000 0000 000	
Clustering		

Clustering (3)

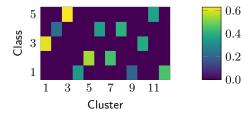
Estimation of coefficients of interaction between high-level and low-level information:

$$\mathbf{q}_j \sim \mathsf{Dir}(\mathbf{1}) \rightarrow \mathbf{q}_j | \mathbf{z}, \boldsymbol{\omega} \sim \mathsf{Dir}(n_{1,j}, \dots, n_{K,j}) \quad \text{with} \quad n_{k,j} = \#\{p | z_p = k, \omega_p = j\}$$

In particular:

$$E[q_{k,j}|\mathbf{z}, \boldsymbol{\omega}] = \frac{n_{k,j}}{\sum_{i=1}^{K} n_{i,k}}$$
$$\approx P[z_p = k|\omega_p = j]$$

Example of estimated \mathbf{Q} matrix



A. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	000000000 00	
Classification		

Classification (1)

Classification rule with a Markov random field

$$\mathbf{P}[\omega_p = j | \boldsymbol{\omega}_{\mathcal{V}(p)}, c_p, \eta_p] \propto \exp\left(W_1(j, c_p, \eta_p) + \sum_{p' \in \mathcal{V}(p)} W_2(j, \omega_{p'})\right)$$

Two potentials:

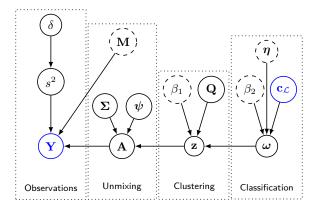
• To promote <u>coherence with labeled data</u> $W_1(j, c_p, \eta_p) = \begin{cases} \log(\eta_p), & \text{if } j = c_p \\ \log(\frac{1-\eta_p}{J-1}), & \text{otherwise} \\ -\log(J) & & \text{otherwise} \end{cases}$

• To promote spatial coherence $\rightarrow W_2(j, \omega_{p'}) = \beta_2 \delta(j, \omega_{p'}).$

Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES

	Model	
	00000000000	
Classification		

Hierarchical model



.agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Model	
	0000000000	
Classification		

Classification (2)

Robust classification:

- $\blacksquare \ \eta_p \in (0,1)$ the confidence in label c_p provided by user
- \blacksquare Possibility to correct labeled data when $\eta_p < 1$

Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Experiments	

Context

Hyperspectral imaging Objective

Model

Spectral unmixing Clustering Classification

Experiments

Synthetic data Real data

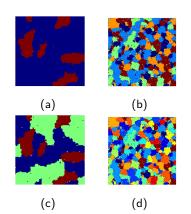
Conclusions and perspectives

.agrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Experiments	
	0000	

Dataset

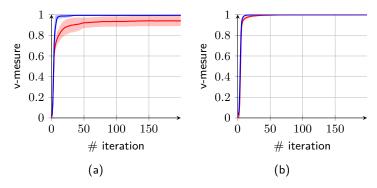
- 413 spectral bands
- SNR = 30dB
- Clustering generated with Potts-Markov MRF
- Classes created by aggregating several clusters
- Image 1: 3 clusters, 2 classes, 3 endmenbers, 100×100p×
- Image 2: 12 clusters, 5 classes, 9 endmembers, 200x200px



Classification map: (a) image 1, (b) image 2; Clusters: (c) image 1, (d) image 2

	Experiments	
Synthetic data		

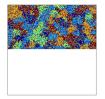
Results



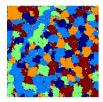
Proposed model in blue, model without classification stage (Eches *et al.*).(a) Clustering convergence for image 1, (b) Clustering convergence for image 2

	Experiments 0000	

Results



Provided labeled data



Classification obtained

- Deterioration of labeled data (40% of error)
- Confidence set to 60%
- \Rightarrow Correction of mislabeled pixels

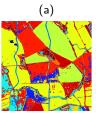
Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

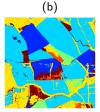
	Experiments	
	0000	

Dataset

- 349 spectral bands
- 10 endmembers extracted with VCA
- 6 classes (straw cereal, summer crop, wooded area, artificial surfaces, bare soil, pasture)
- Top half of groundtruth provided as labeled data







(c) (d) Muesli dataset: (a) colored composition of data, (b) groundtruth, (c) obtained clustering and (d) obtained classification

	Conclusions and perspectives

Context

Hyperspectral imaging Objective

Model

Spectral unmixing Clustering Classification

Experiments

Synthetic data Real data

Conclusions and perspectives

Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)

	Conclusions and perspectives
	•

Conclusions

- A new hierarchical Bayesian model
- Multiple outputs: abundance maps, clusters (means and variances), classification map
- Interesting byproduct for interpretation: interaction matrix describing data structure
- Robustness to labeling error and correction of errors