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Context Model Experiments Conclusions and perspectives

Hyperspectral imaging

Nature of an hyperspectral image

A remote sensing hyperspectral image is:

same area at different wavelength → hundreds of measurements per pixel,

poor spatial resolution due to sensor limitations, e.g., resolution around 10x10m per
pixel for aerial applications
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Hyperspectral imaging

Hyperspectral image interpretation
Spectral unmixing

yp ≈Map

yp: p-th observation
M: endmember matrix (spectra of
elementary components)
ap: p-th abundance vector

Classification

Maximum a posteriori (MAP) rule:

yp belongs to j ⇔ j = argmax
j∈J

p(j|yp),

⇔ j = argmax
j∈J

p(j)p(yp|j).
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Hyperspectral imaging

Classification

Some key issues in classification:

Curse of dimensionality

Cost of expert groundtruth

Label noise in training set

Multimodal classes (intraclass
variability)
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Hyperspectral imaging

Spectral unmixing
One illustrative example

Image: 50× 50 pixels (Moffett field), L = 224 bands,

3 materials: vegetation, water, soil.
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Hyperspectral imaging

Spectral unmixing
A matrix factorization, latent factor modeling or blind source separation problem: Y ≈ MA

1. Principal Component Analysis (PCA)
I Searching for orthogonal “principal components” (PCs) mr,
I PCs = directions with maximal variance in the data,
I Generally used as a dimension reduction procedure.

2. Independent Component Analysis (ICA) (of YT )
I Maximizing the statistical independence between the sources mr,
I Several measures of independence ⇒ several algorithms.

3. Nonnegative Matrix Factorization (NMF)
I Searching for M et A with positive entries,
I Several measures of divergence d (·|·) ⇒ several algorithms.

4. (Fully Constrained) Spectral Mixture Analysis (SMA)
I Positivity constraints on mr ⇒ positive “sources”
I Positivity and sum-to-one constraints on ar
⇒ mixing coefficients = proportions/concentrations/probabilities.
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Objective

Objective

Spectral unmixing Classification
Low-level biophysical information High-level semantic information

Abundance vector per pixel Unique label per pixel
Unsupervised Supervised

=⇒ Scarcely considered jointly.

Objective
Propose a unified framework to estimate jointly a classification map
and a spectral unmixing from an hyperspectral image.

A. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)
A Bayesian model for joint unmixing, clustering and classification of hyperspectral data 9 of 29



Context Model Experiments Conclusions and perspectives

Context
Hyperspectral imaging
Objective

Model
Spectral unmixing
Clustering
Classification

Experiments
Synthetic data
Real data

Conclusions and perspectives

A. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)
A Bayesian model for joint unmixing, clustering and classification of hyperspectral data 10 of 29



Context Model Experiments Conclusions and perspectives

Bayesian model

conventional linear mixing
model;

clustering of homogeneous
abundance vectors;

classification with a
non-homogeneous Markov
random field (MRF) to
promote coherence between
cluster and class labels.
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Spectral unmixing

Linear Mixture Model (1)

Linear combination of elementary signatures corrupted by an additive Gaussian noise

yp = Map + np

with

yp: observation
M: endmember matrix (spectra of elementary components)
ap: abundance vector
np: noise
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Spectral unmixing

Linear Mixture Model (2)

Noise prior modeling

np|s2 ∼ N (0D, s2ID),

s2|δ ∼ IG(1, δ), p(δ|s2) ∝ 1
δ
1R+ (δ).
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Spectral unmixing

Hierarchical model
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Clustering

Clustering (1)

Assumption: several unknown spectrally coherent clusters with statistically
homogeneous abundance vectors, ∀k ∈ {1, ...,K},

ap|zp = k,ψk,Σk ∼ N (ψk,Σk) with Σk = diag(σk,1, . . . , σk,R)

where z1, . . . , zp are discrete labels identifying the belonging to the clusters.

Vague priors for cluster parameters:
I ψk ∼ Dir(1)

→ ensures nonnegativity and sum-to-one constraints of E [ap|zp = k]
(soft constraints on ap)

I σk,r ∼ IG(1, 0.1)
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Clustering

Hierarchical model

Y

s2

δ

M

A

Σ ψ

z

β1 Q

ω

β2

η

cL

Observations Unmixing Clustering Classification

A. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)
A Bayesian model for joint unmixing, clustering and classification of hyperspectral data 16 of 29



Context Model Experiments Conclusions and perspectives

Clustering

Clustering (2)

Clustering with a non-homegeneous Markov random field

P[zp = k|zV(p), ωp, qk,ωp ] ∝ exp
(
V1(k, ωp, qk,ωp ) +

∑
p′∈V(p)

V2(k, zp′ )
)

with V(p) neighborhood of p, ωp classification label of p.

Two potentials:

To promote coherence with classification → V1(k, j, qk,j) = log(qk,j);

To promote spatial coherence (Potts-Markov potential) → V2(k, zp′ ) = β1δ(k, zp′ )
with δ(·, ·) Kronecker function.
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Clustering

Hierarchical model
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Clustering

Clustering (3)

Estimation of coefficients of interaction between high-level and low-level
information:

qj ∼ Dir(1)→ qj |z,ω ∼ Dir(n1,j , . . . , nK,j) with nk,j = #{p|zp = k, ωp = j}

In particular:

E [qk,j |z,ω] = nk,j∑K

i=1 ni,k

≈ P [zp = k|ωp = j]
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Classification

Classification (1)

Classification rule with a Markov random field

P[ωp = j|ωV(p), cp, ηp] ∝ exp
(
W1(j, cp, ηp) +

∑
p′∈V(p)

W2(j, ωp′ )
)

Two potentials:

To promote coherence with labeled data

W1(j, cp, ηp) =


{

log(ηp), if j = cp

log( 1−ηp

J−1 ), otherwise
if p ∈ L

− log(J) otherwise

To promote spatial coherence →W2(j, ωp′ ) = β2δ(j, ωp′ ).
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Classification

Hierarchical model
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Classification

Classification (2)

Robust classification:

ηp ∈ (0, 1) the confidence in label cp provided by user

Possibility to correct labeled data when ηp < 1
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Synthetic data

Dataset

413 spectral bands

SNR = 30dB

Clustering generated with
Potts-Markov MRF

Classes created by aggregating several
clusters

Image 1: 3 clusters, 2 classes, 3
endmenbers, 100x100px

Image 2: 12 clusters, 5 classes, 9
endmembers, 200x200px

(a) (b)

(c) (d)

Classification map: (a) image 1, (b) image 2;
Clusters: (c) image 1, (d) image 2

A. Lagrange Supervisors: Nicolas Dobigeon (IRIT/INP-ENSEEIHT), Mathieu Fauvel (DYNAFOR - INRA/INP-ENSAT) and Stéphane May (CNES)
A Bayesian model for joint unmixing, clustering and classification of hyperspectral data 24 of 29



Context Model Experiments Conclusions and perspectives

Synthetic data

Results
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(a) (b)

Proposed model in blue, model without classification stage (Eches et al.).(a) Clustering
convergence for image 1, (b) Clustering convergence for image 2
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Synthetic data

Results

Provided labeled data

Classification obtained

Deterioration of labeled data (40% of
error)

Confidence set to 60%

⇒ Correction of mislabeled pixels
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Real data

Dataset

349 spectral bands

10 endmembers extracted with VCA

6 classes (straw cereal, summer crop,
wooded area, artificial surfaces, bare
soil, pasture)

Top half of groundtruth provided as
labeled data

(a) (b)

(c) (d)
Muesli dataset: (a) colored composition of
data, (b) groundtruth, (c) obtained
clustering and (d) obtained classification
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Conclusions

A new hierarchical Bayesian model

Multiple outputs: abundance maps, clusters (means and variances), classification
map

Interesting byproduct for interpretation: interaction matrix describing data structure

Robustness to labeling error and correction of errors
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