Variational approximations \& Composite likelihoods: Some links?

S. Robin

AgroParisTech

RESeau Statistiques pour données Spatio-TEmporelles
Paris, Nov. 2015

Dealing with complex models

Models with complex dependency structure (spatial, temporal, network-shaped) yield in complex likelihoods or conditional distributions.

2 main approaches.

- Stochastic algorithms (Monte-Carlo, MCMCM, SMC, ...): sample in the distribution of interest
- Deterministic algorithms: try to optimize or compute a surrogate of the distribution of interest

Deterministic approaches all need to break down dependencies

- Composite likelihood: statistical guaranties [31] but dedicated algorithms need to be designed
- Variational approximation: efficient algorithms [23,33] but no general statistical properties

General setting

Notations.

- $y=$ observed data;
- $\theta=$ parameter to be inferred;
- $z=$ latent variable

Typical (conditional) distributions of interest.

	Frequentist	Bayesian
Fully observed	$p_{\theta}(y)$	$p(\theta \mid y)$
Incomplete data	$p_{\theta}(z \mid y)$	$p(\theta, z \mid y)$

Outline

Dealing with complex models

Composite likelihood

Variational approximations

Some Links?

Conclusion?

Composite Likelihoods

General form. Varin \& al, Statistica Sinica, 2011 [31]

$$
C L(y ; \theta)=\prod_{a} p_{a}(y ; \theta)^{w_{a}}, \quad p_{a}=p\left(y \in \mathcal{A}_{a} ; \theta\right)
$$

where $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{A}\right\}=$ set of marginal or conditional events.

Composite Likelihoods

General form. Varin \& al, Statistica Sinica, 2011 [31]

$$
C L(y ; \theta)=\prod_{a} p_{a}(y ; \theta)^{w_{a}}, \quad p_{a}=p\left(y \in \mathcal{A}_{a} ; \theta\right)
$$

where $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{A}\right\}=$ set of marginal or conditional events.

Composite conditional likelihood.

$$
\prod_{i} p\left(y_{i} \mid y_{\backslash i} ; \theta\right) \quad \text { or } \quad \prod_{i \neq j} p\left(y_{i} \mid y_{j} ; \theta\right)
$$

Composite Likelihoods

General form. Varin \& al, Statistica Sinica, 2011 [31]

$$
C L(y ; \theta)=\prod_{a} p_{a}(y ; \theta)^{w_{a}}, \quad p_{a}=p\left(y \in \mathcal{A}_{a} ; \theta\right)
$$

where $\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{A}\right\}=$ set of marginal or conditional events.

Composite conditional likelihood.

$$
\prod_{i} p\left(y_{i} \mid y_{\backslash i} ; \theta\right) \quad \text { or } \quad \prod_{i \neq j} p\left(y_{i} \mid y_{j} ; \theta\right)
$$

Composite marginal likelihood.

$$
\prod_{i} p\left(y_{i} ; \theta\right), \quad \prod_{i \neq j} p\left(y_{i}, y_{j} ; \theta\right), \quad \prod_{i \neq j} p\left(y_{i}-y_{j} ; \theta\right)
$$

General properties

MCLE. Maximum composite likelihood estimate:

$$
\widehat{\theta}_{C L}=\arg \max _{\theta} C L(y ; \theta) .
$$

Asymptotic normality. Under regularity conditions

$$
\sqrt{n}\left(\widehat{\theta}_{C L}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, G(\theta)^{-1}\right), \quad G=\text { Gotambe matrix. }
$$

Relative efficiency. Measured by comparing $G(\theta)$ with Fisher $I(\theta)$.

Tests. CL versions of Wald or likelihood ratio test exist but 'suffer from practical limitations'.

Asymptotic variance

Reminder on likelihood:

$$
I(\theta)=-\mathbb{E}_{\theta}\left[\nabla_{\theta}^{2} \log L(y ; \theta)\right]=\mathbb{V}_{\theta}\left[\nabla_{\theta} \log L(y ; \theta)\right]
$$

Asymptotic variance

Reminder on likelihood:

$$
I(\theta)=-\mathbb{E}_{\theta}\left[\nabla_{\theta}^{2} \log L(y ; \theta)\right]=\mathbb{V}_{\theta}\left[\nabla_{\theta} \log L(y ; \theta)\right]
$$

Sensitivity matrix: - mean second derivative

$$
H(\theta)=-\mathbb{E}_{\theta}\left[\nabla_{\theta}^{2} \log C L(y ; \theta)\right]
$$

Variability matrix: score variance

$$
J(\theta)=\mathbb{V}_{\theta}\left[\nabla_{\theta} \log C L(y ; \theta)\right] \quad \neq H(\theta)
$$

Godambe information matrix:

$$
G(\theta)=H(\theta) J(\theta)^{-1} H(\theta)
$$

Application: Stochastic Block Model

Stochastic block model (SBM) [14,24]. n nodes, edges $y=\left(y_{i j}\right), z_{i}=$ group of node i

$$
P\left(z_{i}=k\right)=\pi_{k}, \quad y_{i j} \mid z_{i}, z_{j} \sim f\left(\cdot ; \gamma_{z_{i} z_{j}}\right), \quad \theta=(\pi, \gamma)
$$

Likelihood.

$$
p(y ; \theta)=\sum_{z} p(y, z ; \theta)
$$

Application: Stochastic Block Model

Stochastic block model (SBM) [14,24]. n nodes, edges $y=\left(y_{i j}\right), z_{i}=$ group of node i

$$
P\left(z_{i}=k\right)=\pi_{k}, \quad y_{i j} \mid z_{i}, z_{j} \sim f\left(\cdot ; \gamma_{z_{i} z_{j}}\right), \quad \theta=(\pi, \gamma)
$$

Likelihood.

$$
p(y ; \theta)=\sum_{z} p(y, z ; \theta)
$$

Composite log-likelihood [1].

$$
C L(y ; \theta)=\prod_{i \neq j \neq k} p\left(y_{i j}, y_{j k}, y_{i k} ; \theta\right) .
$$

triplets of edges are required to guaranty identifiability.

Application: Paired HMM

Model. M series, K hidden states, $\pi:\left(K^{M}\right) \times\left(K^{M}\right)$,

$$
\left\{z_{t}=\left(z_{i t}\right)\right\}_{t} \sim M C(\pi), \quad\left\{y_{i t}\right\} \text { indep. } \mid z, \quad\left(y_{i t} \mid z_{i t}=k\right) \sim f\left(\gamma_{k}\right) .
$$

Composite likelihood [10]. $\theta=(\pi, \gamma)$

$$
C L(y ; \theta)=\prod_{i \neq j} p\left(y_{i}, y_{j} ; \theta\right)
$$

Application: Paired HMM

Model. M series, K hidden states, $\pi:\left(K^{M}\right) \times\left(K^{M}\right)$,

$$
\left\{z_{t}=\left(z_{i t}\right)\right\}_{t} \sim M C(\pi), \quad\left\{y_{i t}\right\} \text { indep. } \mid z, \quad\left(y_{i t} \mid z_{i t}=k\right) \sim f\left(\gamma_{k}\right) .
$$

Composite likelihood [10]. $\theta=(\pi, \gamma)$

$$
C L(y ; \theta)=\prod_{i \neq j} p\left(y_{i}, y_{j} ; \theta\right)
$$

\rightarrow CL-EM algorithm

- E-step: compute via forward-backward with K^{2} hidden states ${ }^{1}$

$$
p\left(z_{i}, z_{j} \mid y_{i}, y_{j} ; \theta\right) ;
$$

- M-step: update

$$
\widehat{\theta}=\arg \max _{\theta} \sum_{i \neq j} \mathbb{E}\left[\log p\left(y_{i}, y_{j}, z_{i}, z_{j} ; \theta\right) \mid y_{i}, y_{j}\right]
$$

${ }^{1}$ but $\left\{\left(z_{i t}, z_{j t}\right)\right\}_{t}$ is not a Markov chain in general...

Outline

Dealing with complex models

Composite likelihood

Variational approximations

Some Links?

Conclusion?

Variational techniques

Origin. Mostly arise from the machine learning community:

- optimization techniques
- efficient algorithms
- related to graphical models [18]

A huge literature.

- Plenty of tutorials: [17,15]
- Plenty of reviews: [23,29]
- A joint AIGM work: [27]
- An opus magnus:

Wainwright \& Jordan, Found. Trends Mach. Learn, 2008 [33]

(Very) general principle

Aim: For some 'hidden' $h=\theta$ or z or (θ, z), find

$$
q(h) \simeq p(h \mid y)
$$

taking

$$
q \in \mathcal{Q}
$$

(Very) general principle

Aim: For some 'hidden' $h=\theta$ or z or (θ, z), find

$$
q(h) \simeq p(h \mid y)
$$

taking

$$
q \in \mathcal{Q}
$$

$\mathcal{Q}=$ class of 'nice' distributions:
(i) Provided by some (efficient) algorithm.
(ii) Parametric family

$$
\mathcal{Q}=\{\mathcal{N}(\mu, \Sigma)\}
$$

(iii) Breaking down some dependencies

$$
\mathcal{Q}=\left\{q(h)=\prod_{a} q_{a}\left(h^{a}\right)\right\}, \quad h^{a}=\left(h_{j}\right)_{j \in a}
$$

(i): Belief propagation

Exact algorithms allow to compute the conditional distribution $p(z \mid y)$ for some specific dependency structures:

- Forward-Backward for hidden Markov models;
- Upward-Downward for tree-shaped graphical models.

(i): Belief propagation

Exact algorithms allow to compute the conditional distribution $p(z \mid y)$ for some specific dependency structures:

- Forward-Backward for hidden Markov models;
- Upward-Downward for tree-shaped graphical models.

Belief propagation: apply such an algorithm to a structure for which it is not exact [23,9].

(i): Belief propagation

Exact algorithms allow to compute the conditional distribution $p(z \mid y)$ for some specific dependency structures:

- Forward-Backward for hidden Markov models;
- Upward-Downward for tree-shaped graphical models.

Belief propagation: apply such an algorithm to a structure for which it is not exact $[23,9]$.

Alternative $=$ reduction: Merge some $\left(h_{j_{1}}, \ldots h_{j_{m}}\right)$ into multivariate h^{a} so that the dependency structure of $p\left(\left\{h^{a}\right\} \mid y\right)$ is tree-shaped [27].

(ii): Approximate Gaussian posteriors

Bayesian logistic regression: covariates $y_{i} \in \mathbb{R}^{d}$, response $y_{i} \in\{0,1\}$:

$$
\theta \sim \mathcal{N}(\mu, \Sigma), \quad y \mid \theta \sim \mathcal{B}\left(g\left(y_{i}^{\top} \theta\right)\right) \quad \text { with } g(u)=\left(1+e^{-u}\right)^{-1}
$$

$\rightarrow p(\theta \mid y)=$?

(ii): Approximate Gaussian posteriors

Bayesian logistic regression: covariates $y_{i} \in \mathbb{R}^{d}$, response $y_{i} \in\{0,1\}$:

$$
\theta \sim \mathcal{N}(\mu, \Sigma), \quad y \mid \theta \sim \mathcal{B}\left(g\left(y_{i}^{\top} \theta\right)\right) \quad \text { with } g(u)=\left(1+e^{-u}\right)^{-1}
$$

$\rightarrow p(\theta \mid y)=$?
Variational Gaussian posterior [16]: No conjugacy arises but, because of $\left({ }^{2}\right)$,

$$
\log p(\theta, y) \geq \text { quadratic form on } \theta
$$

$\widetilde{\mu}(y) \leftarrow$ first order terms, $\widetilde{\Sigma}(y) \leftarrow$ quadratic terms, so

$$
p(\theta \mid y) \simeq \mathcal{N}(\widetilde{\mu}(y), \widetilde{\Sigma}(y)) .
$$

See also [26,30] for GLMM.
${ }^{2}-\log \left(1+e^{-u}\right)=\frac{u}{2}-\log \left(e^{u / 2} e^{-u / 2}\right) \geq \log g\left(u_{0}\right)+\frac{1}{2}\left(u-u_{0}\right)+\frac{1}{4 u_{0}} \tanh \left(\frac{u_{0}}{2}\right)\left(u^{2}-u_{0}^{2}\right)$

(ii) and (iii): More explicit principle

Aim: Find

$$
q(h) \simeq p(h \mid y)
$$

taking

$$
\arg \min _{q \in \mathcal{Q}} D[q \| p]
$$

(ii) and (iii): More explicit principle

Aim: Find

$$
q(h) \simeq p(h \mid y)
$$

taking

$$
\arg \min _{q \in \mathcal{Q}} D[q \| p]
$$

\rightarrow Need for

- $D[\cdot \| \cdot]$: a measure of divergence between distributions:

$$
K L[q \| p], \quad K L[p \| q], \quad \text { Hellinger }[q, p], \quad D_{\alpha}[q \| p]
$$

see [23] for a review and a comparison of respective merits.

- \mathcal{Q} : a class of 'nice' distributions:

$$
\mathcal{Q}=\{\mathcal{N}(\mu, \Sigma)\}, \quad \mathcal{Q}=\left\{q(h)=\prod_{a} q_{a}\left(h^{a}\right)\right\}
$$

Lower bound of the likelihood

Lower bound: Two equivalent problems

$$
\arg \min _{q} D[q \| p(\cdot \mid y)]=\arg \max _{q} \log p(y)-D[q \| p(\cdot \mid y)]
$$

Lower bound of the likelihood

Lower bound: Two equivalent problems

$$
\arg \min _{q} D[q \| p(\cdot \mid y)]=\arg \max _{q} \log p(y)-D[q \| p(\cdot \mid y)]
$$

Küllback-Leibler divergence: $K L[q \| p]=\mathbb{E}_{q} \log (q / p)$

$$
\begin{aligned}
\log p(y)-K L[q(\cdot) \| p(\cdot \mid y)] & =\log p(y)-\int q(h) \log \frac{q(h) p(y)}{p(h, y)} \mathrm{d} h \\
& =-K L[q \| p(\cdot, y)]
\end{aligned}
$$

Lower bound of the likelihood

Lower bound: Two equivalent problems

$$
\arg \min _{q} D[q \| p(\cdot \mid y)]=\arg \max _{q} \log p(y)-D[q \| p(\cdot \mid y)]
$$

Küllback-Leibler divergence: $K L[q \| p]=\mathbb{E}_{q} \log (q / p)$

$$
\begin{aligned}
\log p(y)-K L[q(\cdot) \| p(\cdot \mid y)] & =\log p(y)-\int q(h) \log \frac{q(h) p(y)}{p(h, y)} \mathrm{d} h \\
& =-K L[q \| p(\cdot, y)]
\end{aligned}
$$

- \neq MLE which minimizes $K L[\hat{p} \| q]$
- Only deals with the joint (or complete) distribution $p(h, y)$ [15]
- Can be used for (variational) Bayes model selection or averaging [32]

A functional optimization problem [4]

Optimal q : must satisfy for any function (direction) r :

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} D[q+t r \| p]=0
$$

A functional optimization problem [4]

Optimal q : must satisfy for any function (direction) r :

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} D[q+t r \| p]=0
$$

One often has

$$
D[q \| p]=\int F[q(h), p(h)] \mathrm{d} h
$$

so, under regularity conditions,

$$
\begin{align*}
\left.\frac{\partial}{\partial t}\right|_{t=0} D[q+\operatorname{tr} \| p] & =\left.\int \frac{\partial}{\partial t}\right|_{t=0} F[q(h)+\operatorname{tr}(h), p(h)] \mathrm{d} h \\
& =\int r(h) F^{\prime}[q(h), p(h)] \mathrm{d} h \tag{3}
\end{align*}
$$

[^0]
A functional optimization problem [4]

Optimal q : must satisfy for any function (direction) r :

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} D[q+t r \| p]=0
$$

One often has

$$
D[q \| p]=\int F[q(h), p(h)] \mathrm{d} h
$$

so, under regularity conditions,

$$
\begin{align*}
\left.\frac{\partial}{\partial t}\right|_{t=0} D[q+\operatorname{tr} \| p] & =\left.\int \frac{\partial}{\partial t}\right|_{t=0} F[q(h)+\operatorname{tr}(h), p(h)] \mathrm{d} h \\
& =\int r(h) F^{\prime}[q(h), p(h)] \mathrm{d} h \tag{3}
\end{align*}
$$

which must hold for any r, so the optimal q satisfies (see also Thm 3 in [23])

$$
F^{\prime}[q(h), p(h)]=0 .
$$

[^1]
Mean-field approximation

Most popular case: $D[q \| p]=K L[q \| p], q(h)=\prod_{a} q_{a}\left(h^{a}\right)$ gives

$$
q_{a}\left(h^{a}\right) \propto \exp \left(\mathbb{E}_{q_{\backslash a}} \log p(h, y)\right)
$$

Remind that

$$
p_{a}\left(h_{a}\right)=\mathbb{E}_{p_{\backslash,}} p\left(h, y \mid h^{\backslash a}\right)
$$

Mean-field approximation

Most popular case: $D[q \| p]=K L[q \| p], q(h)=\prod_{a} q_{a}\left(h^{a}\right)$ gives

$$
q_{a}\left(h^{a}\right) \propto \exp \left(\mathbb{E}_{q_{\backslash a}} \log p(h, y)\right)
$$

Remind that

$$
p_{a}\left(h_{a}\right)=\mathbb{E}_{p_{\backslash,}} p\left(h, y \mid h^{\backslash a}\right)
$$

Stochastic block model (SBM): Conditional distribution $\left(z_{i k}=\mathbb{I}\left\{z_{i}=k\right\}\right)$

$$
\begin{equation*}
P\left(z_{i}=k \mid y, z_{\backslash i}\right) \propto \pi_{k} \prod_{j} \prod_{\ell} f\left(y_{i j} ; \gamma_{k \ell}\right)^{z_{j \ell}} \tag{4}
\end{equation*}
$$

[^2]
Mean-field approximation

Most popular case: $D[q \| p]=K L[q \| p], q(h)=\prod_{a} q_{a}\left(h^{a}\right)$ gives

$$
q_{a}\left(h^{a}\right) \propto \exp \left(\mathbb{E}_{q_{\backslash a}} \log p(h, y)\right)
$$

Remind that

$$
p_{a}\left(h_{a}\right)=\mathbb{E}_{p_{\backslash \mathrm{a}}} p\left(h, y \mid h^{\backslash a}\right)
$$

Stochastic block model (SBM): Conditional distribution ($z_{i k}=\mathbb{I}\left\{z_{i}=k\right\}$)

$$
\begin{equation*}
P\left(z_{i}=k \mid y, z_{i}\right) \propto \pi_{k} \prod_{j} \prod_{\ell} f\left(y_{i j} ; \gamma_{k \ell}\right)^{z_{j \ell}} \tag{}
\end{equation*}
$$

Variational approximation $\left(\tau_{i k}=\mathbb{E}_{q_{i}}\left(z_{i k}\right)\right)(\rightarrow$ Variational $\mathrm{EM}=\operatorname{VEM}[7])$

$$
\tau_{i k} \propto \pi_{k} \prod_{j} \prod_{\ell} f\left(y_{i j} ; \gamma_{k \ell}\right)^{\tau_{j \ell}}
$$

${ }^{4}$ suggest Gibbs sampling as used in [24]

Variational Bayes inference

Bayesian model with latent variable defined by

$$
\text { prior } p(\theta), \quad p(z \mid \theta), \quad p(y \mid \theta, z) \quad \Rightarrow \quad p(\theta, z \mid y)=\text { ? }
$$

Variational Bayes inference

Bayesian model with latent variable defined by

$$
\text { prior } p(\theta), \quad p(z \mid \theta), \quad p(y \mid \theta, z) \quad \Rightarrow \quad p(\theta, z \mid y)=?
$$

Variational Bayes EM (VBEM): taking $h^{1}=z$ and $h^{2}=\theta$ gives

- Variational E-step:

$$
q_{1}(z) \propto \exp \left[\mathbb{E}_{q_{2}} \log p(z, y \mid \theta)\right]
$$

- Variational M-step:

$$
q_{2}(\theta) \propto \exp \left[\mathbb{E}_{q_{1}} \log p(\theta, z, y)\right]
$$

Variational Bayes inference

Bayesian model with latent variable defined by

$$
\text { prior } p(\theta), \quad p(z \mid \theta), \quad p(y \mid \theta, z) \quad \Rightarrow \quad p(\theta, z \mid y)=\text { ? }
$$

Variational Bayes EM (VBEM): taking $h^{1}=z$ and $h^{2}=\theta$ gives

- Variational E-step:

$$
q_{1}(z) \propto \exp \left[\mathbb{E}_{q_{2}} \log p(z, y \mid \theta)\right]
$$

- Variational M-step:

$$
q_{2}(\theta) \propto \exp \left[\mathbb{E}_{q_{1}} \log p(\theta, z, y)\right]
$$

All updates are explicit if $p(z, y \mid \theta)$ belongs to the exponential family and a conjugate prior $p(\theta)$ is used [3].

Statistical properties of variational approximations

Negative.

- VEM algorithm optimum $\neq \mathrm{ML}$ in general [12]
- VBEM posterior variance too small [6]
- Precise analysis for mixture and hidden Markov models [34,22]

Statistical properties of variational approximations

Negative.

- VEM algorithm optimum $\neq \mathrm{ML}$ in general [12]
- VBEM posterior variance too small [6]
- Precise analysis for mixture and hidden Markov models [34,22]

Positive.

- Mean field approximations are asymptotically exact for models with 'infinite range dependency' [25]
- Consistency of the parameters of the approximate Gaussian posterior for generalized linear mixed model [26], special case of Poisson regression [13]
- Consistency of VEM estimates for SBM $[5,21]+$ empirical accuracy of the VBEM posterior for SBM [11]

Outline

Dealing with complex models

Composite likelihood

Variational approximations

Some Links?

Conclusion?

Some Links?

In presence of a complex dependency structure:

- Variational methods break dependencies down and apply efficient algorithms, with few statistical guaranties;
- Composite likelihood methods break dependencies down with statistical guaranties but not always efficient algorithms

Some Links?

In presence of a complex dependency structure:

- Variational methods break dependencies down and apply efficient algorithms, with few statistical guaranties;
- Composite likelihood methods break dependencies down with statistical guaranties but not always efficient algorithms

Question. Are variational methods like Mr Jourdain for composite likelihoods?
Main reference: Luy, NIPS, 2011 [20] ... very few citations since then.

KL contraction

Definition. Denote Ω_{d} the set of all distributions over \mathbb{R}^{d}.

$\Phi: \Omega_{d} \mapsto \Omega_{d^{\prime}}$ is KL-contactant iff, $\exists \beta \geq 1, \forall p, q \in \Omega_{d}$:

$$
K L[p \| q]-\beta K L[\Phi\{p\} \| \Phi\{q\}] \geq 0 .
$$

Examples of KL contraction

Examples of KL contraction

- Marginal distribution:

$$
\Phi_{a}^{m}\{p\}(x)=\int p(x) \mathrm{d} y_{\backslash a} .
$$

Examples of KL contraction

- Marginal distribution:

$$
\Phi_{a}^{m}\{p\}(x)=\int p(x) \mathrm{d} y_{\backslash a} .
$$

- Conditional distribution: for a given distribution $t(y \mid x)$

$$
\Phi_{t}^{c}\{p\}(y)=\int p(x) t(y \mid x) \mathrm{d} x .
$$

Examples of KL contraction

- Marginal distribution:

$$
\Phi_{a}^{m}\{p\}(x)=\int p(x) \mathrm{d} y \backslash a .
$$

- Conditional distribution: for a given distribution $t(y \mid x)$

$$
\Phi_{t}^{c}\{p\}(y)=\int p(x) t(y \mid x) \mathrm{d} x
$$

- Marginal grafting: replace $p_{a}\left(y^{a}\right)$ with $t_{a}\left(y^{a}\right)$

$$
\Phi_{t, a}^{g}\{p\}(x)=p(x) \frac{t_{a}\left(y^{a}\right)}{p_{a}\left(y^{a}\right)}=t_{a}\left(y^{a}\right) p_{\backslash a \mid a}\left(y^{\backslash a} \mid y^{a}\right)
$$

Examples of KL contraction

- Marginal distribution:

$$
\Phi_{a}^{m}\{p\}(x)=\int p(x) \mathrm{d} y_{\backslash a} .
$$

- Conditional distribution: for a given distribution $t(y \mid x)$

$$
\Phi_{t}^{c}\{p\}(y)=\int p(x) t(y \mid x) \mathrm{d} x .
$$

- Marginal grafting: replace $p_{a}\left(y^{a}\right)$ with $t_{a}\left(y^{a}\right)$

$$
\Phi_{t, a}^{g}\{p\}(x)=p(x) \frac{t_{a}\left(y^{a}\right)}{p_{a}\left(y^{a}\right)}=t_{a}\left(y^{a}\right) p_{\backslash a \mid a}\left(y^{\backslash a} \mid y^{a}\right) .
$$

- + binary mixture (\approx shrinkage), lumping (= discretization), ...

Possible use for inference

Type I: Avoid to compute normalizing constants, which can vanish in the difference

$$
\begin{equation*}
K L\left[p \| q_{\theta}\right]-\beta K L\left[\Phi\{p\} \| \Phi\left\{q_{\theta}\right\}\right] \tag{1}
\end{equation*}
$$

Possible use for inference

Type I: Avoid to compute normalizing constants, which can vanish in the difference

$$
\begin{equation*}
K L\left[p \| q_{\theta}\right]-\beta K L\left[\Phi\{p\} \| \Phi\left\{q_{\theta}\right\}\right] \tag{1}
\end{equation*}
$$

Type II: Define a easy-to-handle objective function based on a Taylor expansion of (1).

Possible use for inference

Type I: Avoid to compute normalizing constants, which can vanish in the difference

$$
\begin{equation*}
K L\left[p \| q_{\theta}\right]-\beta K L\left[\Phi\{p\} \| \Phi\left\{q_{\theta}\right\}\right] \tag{1}
\end{equation*}
$$

Type II: Define a easy-to-handle objective function based on a Taylor expansion of (1).

Type III: Use a set of contractions $\left(\Phi_{1}, \ldots \Phi_{A}\right)$ to infer θ with

$$
\arg \min _{\theta} \sum_{a} w_{a}\left[K L\left[p \| q_{\theta}\right]-\beta_{a} K L\left[\Phi_{a}\{p\} \| \Phi_{a}\left\{q_{\theta}\right\}\right]\right] .
$$

Links with composite likelihoods

Maximum likelihood: Taking $p=$ empirical distribution and $q_{\theta}=$ parametric model,

$$
\widehat{\theta}_{M L}=\arg \min _{\theta} K L\left[p \| q_{\theta}\right]
$$

Links with composite likelihoods

Maximum likelihood: Taking $p=$ empirical distribution and $q_{\theta}=$ parametric model,

$$
\widehat{\theta}_{M L}=\arg \min _{\theta} K L\left[p \| q_{\theta}\right]
$$

Type III with marginal contraction = Conditional composite likelihood: For subsets a_{1}, a_{2}, \ldots, using $\Phi_{a}^{m} \rightarrow$

$$
\arg \max _{\theta} \sum_{a} w_{a} \log q_{\backslash a \mid a}\left(y^{\backslash a} \mid y^{a} ; \theta\right)
$$

Links with composite likelihoods

Maximum likelihood: Taking $p=$ empirical distribution and $q_{\theta}=$ parametric model,

$$
\widehat{\theta}_{M L}=\arg \min _{\theta} K L\left[p \| q_{\theta}\right]
$$

Type III with marginal contraction = Conditional composite likelihood: For subsets a_{1}, a_{2}, \ldots, using $\Phi_{a}^{m} \rightarrow$

$$
\arg \max _{\theta} \sum_{a} w_{a} \log q_{\backslash a \mid a}\left(y^{\backslash a} \mid y^{a} ; \theta\right)
$$

Type III with marginal grafting $=$ Marginal composite likelihood: using $\Phi_{p, a}^{g} \rightarrow$

$$
\arg \max _{\theta} \sum_{a} w_{a} \log q_{a}\left(y^{a} ; \theta\right)
$$

+ Gaussian approximation using Φ_{t}^{c} where $t=\mathcal{N}\left(x, \sigma^{2}\right)$.

Outline

Dealing with complex models

Composite likelihood

Variational approximations

Some Links?

Conclusion?

Conclusion: There is no conclusion

Connexions do exist.

- Some variational approximations of the likelihood are actually composite likelihoods $[20,35]$.
- Many authors observe the connexion between composite likelihoods and (contrastive) divergence-based learning, but some end up using MCMC [19,2,8]...
[20]: 'While many non-ML learning methods covered in this work have been shown to be consistent individually, the unification based on the minimum KL contraction may provide a general condition for such asymptotic properties.' ...

Conclusion: There is no conclusion

Connexions do exist.

- Some variational approximations of the likelihood are actually composite likelihoods [20,35].
- Many authors observe the connexion between composite likelihoods and (contrastive) divergence-based learning, but some end up using MCMC [19,2,8]...
[20]: 'While many non-ML learning methods covered in this work have been shown to be consistent individually, the unification based on the minimum KL contraction may provide a general condition for such asymptotic properties.' ...

But

- No nice example to show
- Our favorite $K L\left[q_{\theta} \| p\right]$ does not involve any contraction.
- No generic way to make the connexion.

Variational/composite posterior as proposals

Approximate posterior. Both variational Bayes and composite likelihood provide approximations of the posterior:

$$
p(\theta \mid y) \simeq q_{V B}(\theta), \quad p(\theta \mid y) \simeq q_{C L}(\theta):=p(\theta) e^{C L(y ; \theta)}
$$

Importance sampling. $q_{V B}$ and $q_{C L}$ can be used as proposal for importance sampling

$$
\widehat{\mathbb{E}}_{p}[f(\theta) \mid y]=\sum_{b} \frac{p\left(\theta^{b}, y\right)}{q\left(\theta^{b}\right)} f\left(\theta^{b}\right) / \sum_{b} \frac{p\left(\theta^{b}, y\right)}{q\left(\theta^{b}\right)}, \quad\left\{\theta^{b}\right\} \text { iid } \sim q
$$

but often lead too poor efficiency.

Calibrating variational/composite posteriors

Both variational Bayes and composite likelihood posterior need to be improved:

Can we do that in a automated (sequential) way? Calibration: [28], Optimizing some efficiency criterion: [On-going work].

Christophe Ambroise and Catherine Matias.
New consistent and asymptotically normal parameter estimates for random-graph mixture models.
J. R. Statist. Soc. B, 74(1):3-35, 2012.

Arthur U Asuncion, Qiang Liu, Alexander T Ihler, and Padhraic Smyth.
Learning with blocks: Composite likelihood and contrastive divergence.
In International Conference on Artificial Intelligence and Statistics, pages 33-40, 2010.
J. Beal, M. and Z. Ghahramani.

The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayes. Statist., 7:543-52, 2003.
M.J. Beal.

Variational Algorithms for Approximate Bayesian Inference.
PhD thesis, University College London, 2003.
A. Celisse, J.-J. Daudin, and L. Pierre.

Consistency of maximum-likelihood and variational estimators in the stochastic block model.
Electron. J. Statis., 6:1847-99, 2012.
Guido Consonni and Jean-Michel Marin.
Mean-field variational approximate bayesian inference for latent variable models.
Computational Statistics \& Data Analysis, 52(2):790-798, 2007.
J.-J. Daudin, F. Picard, and S. Robin.

A mixture model for random graphs.
Stat. Comput., 18(2):173-83, Jun 2008.
I. E Fellows.

Why (and When and How) Contrastive Divergence Works.
Technical report, arXiv:1405.0602, 2014.
Brendan J Frey and David JC MacKay.
A revolution: Belief propagation in graphs with cycles.
Advances in neural information processing systems, pages 479-485, 1998.
Xin Gao and Peter X.-K. Song.

Composite likelihood em algorithm with applications to multivariate hidden markov model.
Statistica Sinica, 21(1):165-185, 2011.
Steven Gazal, Jean-Jacques Daudin, and Stéphane Robin.
Accuracy of variational estimates for random graph mixture models.
Journal of Statistical Computation and Simulation, 82(6):849-862, 2012.
A. Gunawardana and W. Byrne.

Convergence theorems for generalized alternating minimization procedures.
J. Mach. Learn. Res., 6:2049-73, 2005.

Peter Hall, JT Ormerod, and MP Wand.
Theory of gaussian variational approximation for a poisson mixed model.
Statistica Sinica, 21:369-389, 2011.
Paul W Holland and Samuel Leinhardt.

Structural sociometry.

Perspectives on social network research, pages 63-83, 1979.
T. Jaakkola.

Advanced mean field methods: theory and practice, chapter Tutorial on variational approximation methods. MIT Press, 2000.

Tommi S Jaakkola and Michael I Jordan.
Bayesian parameter estimation via variational methods.
Statistics and Computing, 10(1):25-37, 2000.
Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul.
An introduction to variational methods for graphical models.
Machine Learning, 37(2):183-233, 1999.
S.L. Lauritzen.

Graphical Models.

Oxford Statistical Science Series. Clarendon Press, 1996.
Percy Liang and Michael I Jordan.
An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators.

In Proceedings of the 25th international conference on Machine learning, pages 584-591. ACM, 2008.
Siwei Lyu.
Unifying non-maximum likelihood learning objectives with minimum KL contraction.
In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, NIPS, pages 64-72, 2011.
M. Mariadassou, S. Robin, and C. Vacher.

Uncovering latent structure in valued graphs: A variational approach.
Ann. Appl. Stat., 4(2):715-742, 062010.
C. A. McGrory and D. M. Titterington.

Variational Bayesian analysis for hidden Markov models.
Austr. \& New Zeal. J. Statist., 51(2):227-44, 2009.
Tom Minka.
Divergence measures and message passing.
Technical Report MSR-TR-2005-173, Microsoft Research Ltd, 2005.
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-173.pdf.
K. Nowicki and T.A.B. Snijders.

Estimation and prediction for stochastic block-structures.
J. Amer. Statist. Assoc., 96:1077-87, 2001.
M. Opper and O. Winther.

Advanced mean field methods: Theory and practice, chapter From Naive Mean Field Theory to the TAP Equations.
The MIT Press, 2001.
John T Ormerod and MP Wand.
Gaussian variational approximate inference for generalized linear mixed models.
Journal of Computational and Graphical Statistics, 21(1):2-17, 2012.
N. Peyrard, S. de Givry, A. Franc, S. Robin, R. Sabbadin, T. Schiex, and M. Vignes.

Exact and approximate inference in graphical models: variable elimination and beyond.
Technical report, ArXiv:1506.08544, June 2015.
J. Stoehr and N. Friel.

Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields.

Technical report, 2015.
Shiliang Sun.
A review of deterministic approximate inference techniques for bayesian machine learning. Neural Computing and Applications, 23(7-8):2039-2050, 2013.

Linda SL Tan and David J Nott.
Variational inference for generalized linear mixed models using partially noncentered parametrizations.
Statistical Science, 28(2):168-188, 2013.
Cristiano Varin, Nancy Reid, and David Firth.
An overview of composite likelihood methods.
Statistica Sinica, 21:5-42, 2011.

Stevenn Volant, Marie-Laure Martin Magniette, and Stéphane Robin.
Variational bayes approach for model aggregation in unsupervised classification with markovian dependency.
Comput. Statis. \& Data Analysis, 56(8):2375-2387, 2012.
M. J. Wainwright and M. I. Jordan.

Graphical models, exponential families, and variational inference.
Found. Trends Mach. Learn., 1(1-2):1-305, 2008.
http:/dx.doi.org/10.1561/2200000001.
B. Wang and M. Titterington, D.

Convergence properties of a general algorithm for calculating variational bayesian estimates for a normal mixture model.
Bayes. Anal., 1(3):625-50, 2006.

Yi Zhang and Jeff Schneider.
A composite likelihood view for multi-label classification.
Journal of Machine Learning Research - Proceedings Track, 22:1407-1415, 2012.

[^0]: ${ }^{3} F^{\prime}(\cdot, \cdot)$ stands for the derivative wrt the first argument of F.

[^1]: ${ }^{3} F^{\prime}(\cdot, \cdot)$ stands for the derivative wrt the first argument of F.

[^2]: ${ }^{4}$ suggest Gibbs sampling as used in [24]

