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Some points addressed in this talk

• Good prior choices for hyperparameters : penalizing model complexity

• Transforming posterior estimations

• Troubleshooting R-INLA : What can go wrong ? Why does inla(...) crash ?
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1 Constructing prior models

2 Transforming posterior distributions returned by R-INLA

3 Troubleshooting
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Choosing prior distributions

We distinguish two types of parameters in INLA models :

• latent Gaussian variables can be numerous and describe the linear predictor
⇒ Gaussian process priors with various precision/dependence structures

• few parameters (or none) not arising linearly in the predictor : hyperparameters
⇒ need to fix hyperprior distributions (or just fix to deterministic value)

Specifying prior distributions in R-INLA (when not using the default) :

hyper=list(theta=list(initial=initval,fixed=TRUE/FALSE,prior=priorname,...)

• theta is the standard name for hyperparameters
(often, we also use prec for precision hyperparameters)

• priorname is the name of the prior distribution

• initval is a numeric starting value for the INLA optimization routines

• fixed=TRUE/FALSE ⇒ keep initval fixed, or estimate the hyperparameter ?

Example : penalized complexity prior for the precision of the Gaussian likelihood
(theta= log-precision)

control.family=list(hyper=list(theta=list(initial=log(1),fixed=FALSE,

prior="pc.prior",param=c(10,0.01))
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Penalized Complexity priors

Simpson et al. (2017)

A principled and intuitive way of defining prior distributions for hyperparameters :

• shrink model towards a simpler reference model at constant rate penalty
(we measure distance to reference model through Kullback-Leibler divergence)

• allows defining moderately informative priors, relatively “stable” in practice

• Examples :

• Gaussian precision/variance : reference model is variance= 0
⇒ exponential prior distribution on standard deviation

• Matérn correlation : reference model is constant field 0 everywhere
⇒ range of Matérn correlation : reference model is infinite range
⇒ exponential prior distribution on 1/range

In R-INLA, can often specify PC priors by two parameters u and α satisfying

Probability(hyperparameter > u) = α
(or < u)
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Gaussian dependence : IGMRF or SPDE ?

In Intrinsic Gauss–Markov Random Field models,
what happens at a specific site/instant is conditionally specified as

weighted average of direct neighbors + independent noise

• need to define a finite number of neighbors, need to discretize space/time/...

• dependence and precision are interwoven, only 1 parameter (precision) to estimate

1D : rw1, rw2,...
spatial : besag, bym,...

In the SPDE models, the partial differential equation generates dependence over
continuous space :

(κ−∆)α/2 x(s) = white noise, α = d/2 + Matern shape, s ∈ K ⊂ Rd

(+ finite element discretization over mesh ⇒ computationally convenient GMRF)

1D : spline models with dependent spline coefficients.
spatial : classical Matérn covariance model.

If raw data are not aggregated over areas/classes, SPDE approaches seem preferable.
BUT : IGRMF models may be faster and simpler to estimate.
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Posterior estimates and transformations

In Bayesian statistics, the estimation itself is a distribution :
it tells us which values of the parameter space arise with which probability.

To summarize this distribution, we often use the posterior mean as a point estimate :

α̂ = E(α | y).

for a parameter α of interest.

B Careful with transformations :

T̂ (α) = E(T (α) | y) 6= T (E(α | y)) = T (α̂)

If the estimation uncertainty (e.g., the variance V(α | y)) is very low,
the right-hand side can give a practically useful approximation.

Otherwise, we have to “recalculate”

E(T (α) | y) =

∫
T (α)π(α | y),dα

based on the posterior density π(α | y).

B If we use the posterior median α̂med (and not the posterior mean) as a point
estimate, then we can directly transform the estimator without “transformation error”.
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Example : precision to standard deviation
Remember the example of monthly rw1 for monthly Nottingham temperatures.
mean sd 0.025quant 0.5quant 0.975quant mode

Precision for the Gaussian observations 0.1884 0.0176 0.1558 0.1878 0.2249 0.1868

Precision for month 0.0544 0.0216 0.0224 0.0511 0.1061 0.0446

“Naive” transformation of posterior mean of month precision parameter gives

> sqrt(1/fit$summary.hyperpar$mean[2])
[1] 4.28788

“Correct” transformation taking into account posterior uncertainty :

> prec2sd=function(prec){sqrt(1/prec)}
> inla.emarginal(prec2sd,fit$marginals.hyperpar$‘Precision for month‘)
[1] 4.544564

Plot posterior densities for precision and standard deviation :

plot(fit$marginals.hyperpar$‘Precision for month‘,...)
plot(inla.tmarginal(prec2sd,fit$marginals.hyperpar$‘Precision for month‘),...)
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Sampling from the posterior distribution

To calculate the posterior estimates of some transformed quantity

E(T (α) | y) =

∫
T (α)π(α | y) dα,

we can also adopt a Monte-Carlo approach by sampling from the posterior
distribution :

sample.post = inla.posterior.sample(n = 1000, result = inlafit)

⇒ sample.post[[i]] contains the ith simulation from n simulations :

• sample.post[[i]]$latent is a vector containing a sample of the linear predictor
η(x) = Ax and the fixed and random effects included in x

• sample.post[[i]]$latent contains the sampled hyperparameter values (if any)

⇒ construct T̂ (α) = 1
n

∑n
i=1 T (αi )
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Things often do not work immediately...

The inla(...) run may fail/crash for various reasons.
In rare cases, even if inla(...) runs through, results may be nonsensical.
E.g., posterior effect ≈ prior effect in (overly) complex models for very
high-dimensional data.

Typical issues :

• numerical instabilities in matrix calculations (very high-dimensional, near
singular...)

• joint likelihood of all data is too “flat” for the numerical Laplace approximation
to converge easily (e.g., many latent Gaussian ”iid” variables)

• no more RAM memory available ⇒ inla(...) crashes, or becomes extremely
slow

• sometimes, with very high dimension of data, numerical instabilities if data or
SPDE coordinates are “far from O(1)”
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Troubleshooting

Always check fitted models if they “make sense” based on what you know about the
data.

Troubleshooting for very complex problems and/or very high-dimensional data

⇒ use trial and error to see what works and where the problem is :

• start with simple models, add effects one at a time towards the “full” model

• to start, try a numerically convenient Gaussian response for simplicity :
Laplace approximation is exact for Gaussian response
⇒ no need for calculating it iteratively
(BUT : don’t do this for highly nongaussian data, e.g. 0/1-data)

• fit your model on a random subsample of your data to see if it works correctly

• use a less accurate but faster approximation strategy :
inla(...,control.inla=list(int.strategy="eb", strategy="gaussian"))

• put more informative priors on fixed effects, e.g.
inla(...,control.fixed=list(prec=.1,prec.intercept=.01))

• if responses yi , covariates or SPDE coordinates are “far from O(1)”,
rescale them to have more moderate values
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