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Plan for this talk

• understand which models are suitable for estimation with INLA

• understand the basic mechanism of Integrated Nested Laplace Approximation

• learn how to run some simple models in R-INLA and how to conduct prediction

⇒ general theoretical concepts, and practical implementation in R-INLA
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Some important resources for R-INLA with SPDE

http://www.r-inla.org/

• newsfeed

• discussion forum

• FAQ, examples and tutorials

A great book soon to come, already available for free online :

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and
INLA
by E.T. Krainski, V. Gómez-Rubio, H. Bakka, A. Lenzi, D. Castro-Camilo, D.
Simpson, F. Lindgren and H. Rue
https://becarioprecario.bitbucket.io/spde-gitbook/
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1 What models can we handle with INLA ?

2 Estimation through Integrated Nested Laplace Approximation

3 R-INLA in practice
Prediction with R-INLA

Several practical examples
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What kind of data/models can we fit with INLA ?

• generalized additive (mixed) regression models
⇒ explain observed response variable through covariates and random effects :

y ∼ β0 + β1 × covar.1 + . . .+ βm × covar.m︸ ︷︷ ︸
fixed effects

+ random effects

︸ ︷︷ ︸
linear predictor

• large variety of response distributions for y

• (log-)gaussian : (log) y =linear predictor+Gaussian error

• Poisson : log(intensity) = log(Ey) = linear predictor

• generalized Pareto : log(α-quantile of y)= linear predictor

and many more (gamma, skew normal, t, binomial), see inla.list.models("likelihood")

• random effects ⇒ high flexibility :

• model nonlinear trends with respect to space/time/covariates

• model longitudinal effects, space/time dependence

• structured (e.g., space/time dependence) or unstructured (e.g., measurement error)

⇒ capture variability in response not explained by fixed effects and response
distribution

⇒ SPDE approach very useful for continuous random effects (Haakon’s tutorial)

see inla.list.models("latent")
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Bayesian inference

INLA uses a Bayesian framework :

• we put Gaussian prior distributions on fixed effects βj and random effects,
which can be (relatively) uninformative or incorporate expert knowledge

⇒ linear predictor is multivariate Gaussian

⇒ when we have only few data, prior has strong influence

• we can estimate some hyperparameters controling

• signal-to-noise ratio, smoothing ⇒ precision parameters

• range of dependence over space/time/..., e.g. range of Matérn correlation

• shape of the response distribution, e.g. gamma shape, skew-normal

see inla.list.models("prior")
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Bayesian hierarchical formulation of models

θ ∼ π(θ) hyperparameters

x | θ ∼ N (0,Q(θ)−1) latent Gaussian components

y | x ,θ ∼
∏
i

π(yi | ηi (x),θ) likelihood of observations

• univariate likelihood π(yi | ηi (x),θ) for data

• observation/projection matrix A links latent Gaussian components to
observations :

η(x) = (η1(x), . . . , ηn(x)) = Ax where yi ∼ ηi (x)

• Q(θ) is called precision matrix (= inverse of variance-covariance matrix)

• R-INLA’s speed, even in very high dimension, is based on
• using sparse matrices for Q with mostly 0 entries
• few non-0 entries in each row of A
• conditional independence of data y given the linear predictor η and θ

(⇒ sparsity is preserved during matrix computations in R-INLA)
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Example : linear model with two covariates z1, z2

yi | (x ,θ) ∼ N (ηi (x), σ2), i = 1, . . . , n
linear predictor ηi (x) = β0 + β1z1i + β2z2i

latent Gaussian vector x = (β0, β1, β2)

• Gaussian likelihood π(y | ηi (x), θ) = 1√
2π exp(−θ)

exp
(

1
2

y−η(x)
exp(−θ)

)

• x ∼ N (0,Q−1) with Q =

τ0 0 0
0 τβ 0
0 0 τβ


for fixed effects, we usually fix the precision hyperparameters τ0, τβ to a very low
value, e.g. 10−3 (⇒ non-informative priors)

• hyperparameter θ = log(1/σ2) ∈ R (log-precision of Gaussian likelihood),
for instance with an exponential prior with rate λ on σ such that

π(θ) =
λ

2
exp (−λ exp(−θ/2)− θ/2) , λ > 0

(Penalized Complexity Prior, see later talks)
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Example : estimating a nonlinear regression curve

1D SPDE models are random effects in R-INLA, useful to estimate continuous curves :

• spline-like model with different degrees of smoothness

• Bayesian framework allows using many knots and correlating spline coefficients
using a Matérn-like correlation model

• two hyperparameters : range, precision

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
10

0
10

20
30

INLA fit of data (gray dots) with 1D spline prior for latent curve.

Pointwise 95% credible envelope in blue.
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What random effect models are available in R-INLA ?

Output of inla.list.models("latent") :

ar Auto-regressive model of order p (AR(p))
ar1 Auto-regressive model of order 1 (AR(1))
besag The Besag area model (CAR-model)
generic A generic model
iid vector of independent effects
meb Berkson measurement error model
ou The Ornstein-Uhlenbeck process
rw1 Random walk of order 1
rw2 Random walk of order 2
rw2d Thin-plate spline model
slm Spatial lag model
spde2 A SPDE2 model

and many more...

Instances of such models can be linked together through a group model
(AR, RW, exchangeable, ...).
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Example : first-order random walks

First-order Gaussian random walks (rw1 in R-INLA) are useful prior models for
capturing nonlinear covariate effects or time trends.

They can be interpreted as very special and simple cases of 1D SPDE models.

A rw1 is defined intrinsically over m classes through its “innovations”

xi+1 − xi ∼ N (0, 1/τRW ), i = 2, . . . ,m.

It has one hyperparameter τRW measuring precision.

To make it identifiable, we have to impose a constraint such as
∑m

i=1 xi = 0.

For easier interpretation, we may rescale to marginal distribution N (1/τRW )
(i.e., control precision τRW averaged over all xi ).

5 10 15 20 25

−
3

−
2

−
1

0
1

2

10 realizations of a constrained rw1 over t = 1, . . . , 25, rescaled, 1/τRW = 1
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Prediction with R-INLA

Several practical examples
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Estimating Bayesian additive regression models

We obtain the posterior estimations through Bayes’ formula.

B Usually, we cannot calculate the posterior estimations in closed form :

• posterior densities π(θj | y), π(xk | y), π(ηi | y)

• posterior mean estimates E(θj | y), E(xk | y), E(h(ηi ) | y)

B Moreover, the latent Gaussian components x are often very high-dimensional.

⇒ use numerical approximation of complicated integrals :

• Markov-chain Monte-Carlo : iteratively simulate and update values x (j),θ(j)

⇒ generate a large representative sample of posterior distribution

• theoretical convergence garantueed, but often too slow and unstable in practice
B mixing (i.e., exploration of the space of parameters) can be too slow

• Integrated Nested Laplace Approximation : use astute numerical integration

13/21



Laplace approximation

Suppose that we want to calculate∫ ∞

−∞
exp(g(x)) dx

where x is a vector with many components, such as the latent Gaussian components.

If g has maximum at x0 and its values decrease fast and smoothly around x0,
we can replace g(x) by a curvature approximation around x0 :

g(x) ≈ g(x0) + 0.5(x − x0)′H(g)(x0)(x − x0)

with Hessian matrix H containing second partial derivatives of g at x0.

Using this approximation, the function to integrate becomes an (unnormalized)
Gaussian density :∫ ∞

−∞
exp(g(x)) dx ≈ (2π)d/2 |H(g)(x0)|−1/2 exp(g(x0)).

In practice, it remains to determine x0 and H(g)(x0)
⇒ iterative Newton–Raphson algorithm.
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A schematic overview of how INLA works
All hyperparameters are fixed : skip 1 and 2.2. Exactly 1 hyperparameter : skip 1.2.

1 Calculate posterior density of hyperparameter θj :

π(θj | y) =

∫ ∫
π(θ, x | y)dxdθ−j

1 dx : use Laplace approximation for each configuration θ
2 dθ−j : use numerical integration

2 Calculate posterior density of latent components xi or predictors ηi :

π(xi | y) =

∫ ∫
π(x ,θ | y)dx−i dθ

1 dx−i : use Laplace approximation (strategy="laplace"), but often too expensive
• cheap but often less accurate : use conditional Gaussian from dx above (strategy="gaussian")
• R-INLA default is a simplified Laplace approximation (strategy="simplified.laplace")

2 dθ : use numerical integration

R-INLA proposes three variants for numerical integration in 1.2 and 2.2 :

• grid of θ configurations (int.strategy="grid", most costly)

• central composite design (int.strategy="ccd", the default)

• only the mode of π(θ | y) (empirical Bayes, int.strategy="eb")
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Prediction with R-INLA

The output of inla(...) contains the posterior estimates of fitted values for
observations, but we often want to predict where no observations are available :

• spatial interpolation

• temporal prediction

• fill missing data values

The simplest prediction strategy in R-INLA is to add response data with NA values.
B covariates cannot be missing, only responses !

Another simple possibility :

1 “construct” the posterior mean of the linear predictor for new unobserved data
with observation matrix Anew by transforming the posterior mean of latent
Gaussian components,

η̂new = Anew E(x | y)

2 transform to the scale of the response if necessary

B propagation of posterior uncertainty of x given y in Step 2 is disregarded !
e.g. with log-link, exp(η̂new) will tend to underestimate the response values

Yet another possibility : generate a large sample from the posterior distribution of
model components using inla.posterior.sample(...), and then conduct
Monte-Carlo calculation of predictions etc.
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Practical examples

We will now treat several code examples ⇒ open examples.R in RStudio.
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Example 1 : monthly temperatures in Nottingham
1920–1939

nottem dataset of R

Objective : model seasonal behavior

• use monthly random walk (m = 12) to capture seasonality in data
⇒ 12 latent Gaussian variables x1, . . . , x12 with

xt+1 − xt ∼ N (0, 1/τRW )

• random walk values for January and December should be linked
⇒ make the random walk cyclic by setting

x1 − x12 ∼ N (0, 1/τRW )
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Example 2 : Daily air quality data for New York,
May-September 1973

airquality dataset of R m containing Ozone (with missing values), temperature,
wind speed,...

Objective : predict missing values of Ozone

• model 1 : temperature and wind as linear covariates (fixed effects)

• model 2 : temperature and wind as nonlinear covariates
⇒ use rw1 over classes of covariate values

• model 3 : temperature and wind (fixed effects), ar1 for time dependence

• could combine two of the preceding models, e.g. model 2 and model 3

⇒ select best model through cross-validation of root-mean squared error
(or of any other good metric of predictive performance)
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Example 3 : 1D SPDE for nonlinear regression curve

simulated dataset

Objective : fit a smooth nonlinear curve

0 2 4 6 8 10

−
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0
10

20
30

1000 data points
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