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General framework

• In several cases models have complex interdependencies
and/or we deal with large dataset.

• Joint distribution of the data may be difficult to evaluate, or
even to specify!

• Typical difficulties arise from the need to invert large matrices
when we deal with large dataset and/or from approximation of
intractable integrals

• Ancient Roman’s principle:

dividi et impera

(’diviser pour regner’, Louis XI )

• Idea: if computing likelihoods for certain subsets of the data is
possible, then one may construct a pseudolikelihood by
combining such likelihood objects and use this as a surrogate
for the ordinary likelihood

• Review paper: Varin et al. (2011)
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Example: spatio-temporal Gaussian data I

• s ∈ Rd is a spatial location, t ∈ R is a time point

• Observations z = (z(s1, t1), . . . , z(sn, tn))′ from a Gaussian
Random Field (GRF) {Z (s, t)}
• Weakly stationarity

cov(Z (s, t),Z (s ′, t ′)) = C (h, u; θ)

(h = s − s ′, spatial lag, u = t − t ′ temporal lag).

• Likelihood computation requires inversion of n× n covariance
I O(n3) operations, O(n2) memory
I If n large, this may be unfeasible!
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Example: spatio-temporal Gaussian data II

• Two possible strategies:
1. simplify the model:

I approximate with a Gaussian Markov Random Field (Lindgren
et al., 2011) requiring roughly O(n log n) operations

I approximate with low rank methods (Cressie and
Johannesson, 2008) O(n)

2. keep your model but simplify the fitting method: e.g. Curriero
and Lele (1999) estimate θ from the pseudolikelihood

PL(θ; z) =
∏

i>j

f (z(si , ti )− z(sj , tj); θ)w(si , tj , sj , tj)
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Example: spatio-temporal non-gaussian data I

• Generalized linear geostatistical models (latent Gaussian
models)

E (Z (s, t)|U(s, t)) = g−1
(
x(s, t)′β + U(s, t)

)

where {U(s, t)} is a latent GRF.

• In general, the likelihood involves an n-dimensional integral

L(β, ψ, θ; z) =

∫

Rn

f (z|u;β, ψ)f (u; θ)du

• Monte Carlo methods: MCEM, MCMC, etc. may be
time-consuming even for moderate n

I INLA method (Rue et al., 2009) ⇒ see Thomas’s talk

• Simpler: pseudolikelihood constructed from bivariate margins

PL(θ; z) =
∏

i>j

f (z(si , ti ), z(sj , tj); θ)w(si ,tj ,sj ,tj )
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Example: spatio-temporal extreme values I

• Observations z = (z(s1, t1), . . . , z(sn, tn))′ are maxima
recorded values

• Classical extreme value theory says that the marginal
distribution can be modeled by the GEV distribution

Pr(Z (s, t) ≤ z) = exp
[
−{1 + ξ(z − µ)/σ}−1/ξ

]

with µ ∈ R, ξ ∈ R, σ > 0 and {1 + ξ(z − µ)/σ} > 0.

• Unit Fréchet margins (i.e. µ = ξ = σ = 1)

Pr(Z (s, t) ≤ z) = exp [−1/z ]
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Example: spatio-temporal extreme values II
• A max-stable process (de Haan, 1984), is the extension for

maxima of independent replications of (space-time) random
fields.

• Suppose unit Fréchet margins. Finite dimesional distribution

Pr(Z ≤ z) = Pr(Z (s1, t1) ≤ z1, . . . ,Z (sn, tn) ≤ zn)

= exp(−V (z))

V (z) is a positive function such that V (a−1z) = aV (z) for
any a > 0 and z > 0

• Assume a parametric model

Pr(Z ≤ z) = exp(−V (z; θ))

the likelihood corresponds to the derivative with respect to all
components of z.

I The number of terms is the Bn Bell number, around 8.3× 1010

for n = 17 !
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Composite likelihood: definition

Consider

1. a statistical model
{
f (z; θ), z ∈ Rn, θ ∈ Θ ⊆ Rp

}
;

2. a set of measurable events {Ak ; k = 1, . . . ,K};
3. the associated likelihoods Lk(θ; z) = f (z ∈ Ak ; θ).

Then, a composite likelihood (CL) is the weighted product of the
likelihoods corresponding to each single event,

CL(θ; z) =
K∏

k=1

Lk(θ; z)wk ,

where {wk ; k = 1, . . . ,K} are positive weights.
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Composite conditional likelihood

• Notation zi = z(si , ti ), zD = {zj , j ∈ D}, D ⊂ {1, . . . , n} and
D is a set of D.

CCL(θ; z) =
∏

D∈D
f (zD |zDc ; θ),

• Besag’s pseudolikelihood (Besag, 1974)

CCL(θ; z) =
n∏

i=1

f (z(si )|z∂i ; θ),

∂i neighborhood of si

• Spatial GRF: Vecchia (1988), Stein et al. (2004)

• Limited number of space-time applications
I Mixed states spatio-temporal auto-models on regular lattice

(Hardouin and Crivelli, 2011)
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Composite marginal likelihood

• More commonly used

CML(θ; z) =
∏

D∈D
f (zD ; θ)

• Independence likelihood (Smith, 1990; Chandler and Bate,
2007) where the sets D are disjoint

I θ = (θS , θT )′ and inference about θS

CML(θ; z) =
T∏

t=1

f (z(t); θS)

with z(t) = (z(s1, t), . . . , z(sk , t))

• pairwise likelihood:
∏

i>j

f (zi , zj ; θ)

• tripletwise likelihood,. . ., ”blockwise” likelihood

• pairwise differences (for GRF):
∏

i>j

f (zi − zj ; θ)
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Hybrid methods

• hybrid pairwise likelihood: Kuk (2007)
I optimal estimating equations for marginal parameters
I pairwise likelihoods for estimating dependence parameters
I no examples for space-time examples yet !

• joint composite estimating functions : Bai et al. (2012)
I space-time example, see later.
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Composite likelihood quantities I

• Composite log-likelihood

c`(θ; z) = logCL(θ; z) =
M∑

k

log `k(θ; z)wk

• Composite score

u(θ; z) =
K∑

k=1

log∇`k(θ; z)wk =
K∑

k=1

uk(θ; z)wk , ⇒ E [u(θ;Z)] = 0

• Maximum composite estimator θ̂CL

c`(θ̂CL; z) ≥ c`(θ; z), ∀θ ∈ Θ
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Composite likelihood quantities II
• Godambe (or sandwich) information

G (θ) = H(θ)J(θ)−1H(θ)

I Sensitivity matrix: H(θ) = E [−∇u(θ;Z)],

Ĥ = −∇u(θ̂CL; z)

I Variability matrix: J(θ) = Var [u(θ;Z)]

How to estimate ?
I Misspecification H(θ) 6= J(θ)
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Asymptotics I

• Two types of asymptotic frameworks
I fixed domain

I fill a space-time region with a sequence of observed locations
I no results

I increasing domain:
I expand a a space-time region for recover more observed

locations
I regular lattice: R0 ⊂ (− 1

2
, 1

2
]d+1,

Rn = {(s1, t1), . . . , (sn, tn)} = (λnR0) ∩ Zd+1

840 Y. D. Lee and S. N. Lahiri

results of the paper remain directly applicable to discrete spatial processes indexed by Zd as
well. In the context of asymptotics for spatial data, the present sampling scheme falls under the
purview of what is known as increasing domain asymptotics (Cressie (1993), section 2.6). The
methodology and results of the paper can also be extended to certain other spatial sampling
schemes, such as the mixed increasing domain asymptotic structure considered in Lahiri et al.
(2002), which allows partial infill sampling of the region Rn.

3.2. Spatial subsampling method
The subsampling method that we consider here is a modification of the standard subsampling
method for dependent data, developed by Possolo (1991), Politis and Romano (1994) and Hall
and Jing (1996), and is akin to the spatial subsampling method proposed by Sherman and Carl-
stein (1994), Sherman (1996) and Lahiri et al. (1999). To describe the method, let {λÅn} be a
sequence of integers such that λn=λÅn ∈ Z and λ*−1

n +λÅn=λn → 0 as n → ∞. For example,
we may set λÅn = constant × λ

1=2
n . We define the subregions for the spatial subsampling meth-

od by considering suitable translates of the set λÅn · R0. More specifically, let In = {i ∈ Zd :
i + .− 1

2 ;
1
2 ]
dλÅn ⊂ Rn} denote the index set of the d-dimensional cubes i + .− 1

2 ;
1
2 ]
dλÅn ; i ∈ Zd

that are contained in Rn. Then we define the subregions {R*.i/ : i ∈ In} by inscribing, for each
i ∈ In, a translate of λÅn ·R0 inside the cube i + .− 1

2 ;
1
2 ]
dλÅn such that the origin is mapped onto

i, i.e. by the relationship R*.i/ = i + λÅnR0; i ∈ In.
As Fig. 1 shows, {R*.i/ : i ∈ In} gives a collection of overlapping subregions of Rn that are

of the same shape as the original sampling region Rn, but of smaller volume. Moreover, the
number (say, l) of observations in each subregion is the same. By equation (3.1), the sample
size n grows at the rate n ∼ λdn|R0| whereas the subsample size l grows at the rate l ∼ |R0|λ*dn
where, for any set A, we denote its volume (Lebesgue measure) by |A|, and where, for any two
sequences of positive numbers {tn} and {un}, we write tn ∼ un if tn=un → 1 as n → ∞. Hence,
for our subsampling method, l → ∞ and n=l → ∞ as n → ∞. This is similar to the time series
case, where the size l of subsamples (or blocks) also grows to ∞ at a rate that is slower than the
sample size n.

The observations from the subregions can be used to define the subsampling estimator of the
covariance matrix (and, more generally, the probability distribution) of a givenK-dimensional
random vector Tn = tn.Zn;η/, whereZn = {Z.s1/; : : :;Z.sn/} and η is a population parameter.
For this, on each subregionR*.i/, we define a version TÅ.i/of Tn by replacing the observed values
Zn with the subsampleZÅ.i/ ≡ {Z.s/ : s ∈ R*.i/ ∩ Zd} from the subregion R*.i/, and by replac-

Fig. 1. (a) Sampling region Rn (�, sampling sites) and the prototype set R0 and (b) a few typical subregions
for the overlapping subsampling methods with centres at (0,0), (2,0), (0,2), (2,2) and (4,�2)
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Asymptotics II

• Idea: log-composite likelihood is an additive contrast function
(Hardouin, 1992; Guyon, 1995)

Un(θ) =
1

Kn

Kn∑

k=1

log f (z ∈ Ak ; θ)wk

• mixing conditions on {Z (s, t)}
• θ̂CL is asymptotically Gaussian

G (θ)1/2(θ̂CL − θ∗) d−→ N (0, I )

• θ∗ is the minimizer of the composite Kullback-Leibler
divergence

CKL(θ; g , f ) =
∑

k

Eg{log g(Z ∈ Ak)− log f (Z ∈ Ak ; θ)}wk
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Asymptotics III

• consistency if all composite likelihood ”blocks” correctly
specified

∃θ such that f (z ∈ Ak ; θ) = g(z ∈ Ak) ∀k ∈ K

• Space-time examples:
I GRFs: Bevilacqua et al. (2012); Bai et al. (2012)
I Max-stable processes: Davis et al. (2013)
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Hypothesis testing

Null hypothesis H0 : ψ = ψ0 where θ = (ψ, τ) and ψ ∈ Rq

• Wald-type statistics (no invariance under reparameterization)

• Score-type statistics (numerical instability)

• Composite likelihood ratio statistics

W = 2{c`(θ̂CL; z)− c`(ψ0, τ̂CL(ψ0); z)}

I Non standard distribution

W
d−→

q∑

j=1

λjχ
2
1,j

λ1 ≥, . . . ,≥ λq eigenvalues of (Hψψ)−1Gψψ (Kent, 1982;
Guyon, 1995)

I How to calibrate W ? Spatial example in Cattelan and Sartori
(2014)
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Model selection

• Model selection based on Akaike-type criterion (Takeuchi,
1976)

• composite likelihood information criterion (Varin and Vidoni,
2005)

CLIC = −2cl(θ̂CL; z) + 2 dim(θ)

• composite Bayesian information criterion (Gao and Song,
2010)

CBIC = −2cl(θ̂CL; z) + log(n) dim(θ)

• effective number of parameters

dim(θ) = tr(H(θ)J−1(θ))

• CLIC has a tendency to select over-complicated models.
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Model selection: example I

• 100 independent simulations from a zero mean space-time
Gaussian process with covariance function C (h, u; θ)

• two space-time grids: S × T , where S = [−2, . . . , 3]2 and
T = {1, . . . ,T} with T = 100, 200,

• Z (si , ti )− Z (sj , tj) ∼ N (0, 2γ(si − sj , ti − tj)) with
γ(h, u) = C (0, 0; θ)− C (h, u; θ)

• pairwise difference likelihood

PL(θ; z) =
∏

i>j

f (z(si , ti )− z(sj , tj); θ)
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Model selection: example II
model A Double exponential model (separable model)

C (h, u; θ) = σ2 exp

(
−3
‖h‖
a
− 3
|u|
b

)

model B Gneiting model

C (h, u; θ) =
σ2

( 20|u|2α
b + 1)

exp

{
− 3‖h‖
a( 20|u|2α

b + 1)β/2

}
,

with β = 0 (separable model)
model C Gneiting model with β 6= 0;
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Model selection: example III

Identified
T=100 T=200

Model (A) (B) (C) (A) (B) (C)
(A) 84 10 6 96 2 2

True (B) 8 70 22 5 82 13
(C) 9 19 72 3 12 85

I at least 70% of the models have been correctly identified.
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Large data set: around 150000 observations
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All that glisters is not gold...
The Merchant of Venice, W. Shakespeare I

• variability matrix J(θ) = Var [u(θ;Z)] key ingredient for
I evaluating uncertainty of composite likelihood estimates
I test statistics
I information criteria for model selection

• the simpler case is when there are T independent replicates
(in time, for instance) z(t) = (z(s1, t), . . . , z(sk , t))

Ĵ =
1

T

T∑

i=1

u(θ̂MC ; z(t))u(θ̂MC ; z(t))>

I space-time models for extreme values (Huser and Davison,
2014)
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All that glisters is not gold...
The Merchant of Venice, W. Shakespeare II

• more stable to estimate directly the variance matrix of θ̂CL by
bootstrap but computational demanding (Bags of little
bootstrap ?, Kleiner et al. (2014))

• much harder when there is no replication in space or time

• analytic expressions are possible only for few special cases
(spatial GRF, Bevilacqua and Gaetan (2014)) but too
computational demanding (O(n4))

• resampling methods based on idea of some form of ”internal
replication” (block-bootstrap, window subsampling)

I difficult to specify tuning parameters (block dimension)
I arduous with irregularly spaced temporal and spatial

observations
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Composite likelihood design I

• How to choose among many possible composite likelihoods?
• for example, which is preferable between

I the pairwise marginal likelihood

c`m(θ; z) =
∑

i>j

wij log f (zi , zj ; θ)

I the conditional likelihood

c`c(θ; z) =
∑

i 6=j

wij log f (zi |zj ; θ)

I the pairwise difference likelihood (for GRF)

c`d(θ; z) =
∑

i>j

wij log f (zi − zj ; θ)

• Same computational burden: O(n2)

• In large settings: should all possible pairs be included?
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Weighted composite likelihoods

• When efficiency is low, unequal weighting of likelihood
components can be used to obtain some improvement

• Optimal weights computationally impractical

• It sensible to assume wij = wji for c`m and c`d

• If wij = wji and wii = 1

c`c(θ; z) = 2c`m(θ; z)− (n − 1)
n∑

i=1

log f (zi ; θ)

I When the marginal parameters are known, marginal and the
conditional pairwise likelihood have the same efficiency.

• in space-time setting underweight observations that are far
apart in time and/or space
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’Simple’ weighted composite likelihoods I

• weights based on the distances.

wij(d) =

{
1 ‖si − sj‖ ≤ ds , |ti − tj | ≤ dt , d = (ds , dt)

′

0 otherwise

d

• Isotropy ?
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’Simple’ weighted composite likelihoods II
• Spatial setting results (Bevilacqua and Gaetan, 2014)
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Exponential model Cauchy model Wave model

µ φ σ2 µ φ σ2 µ φ σ2

ML bias 0.0037 -0.0015 -0.0067 0.0044 -0.0010 -0.0041 0.0012 -0.0001 -0.0022

rmse 0.0843 0.0114 0.0792 0.0973 0.0089 0.0758 0.0409 0.0027 0.0648

TAP bias 0.0039 -0.0013 -0.0074 0.0048 -0.0015 -0.0096 0.0011 -0.0026 -0.0022

rmse 0.0851 0.0129 0.0791 0.0989 0.0094 0.0767 0.0420 0.0155 0.0675

plC bias 0.0041 -0.0028 -0.0089 0.0050 -0.0034 -0.0110 0.0013 -0.0010 -0.0020

rmse 0.0900 0.0133 0.0826 0.1033 0.0120 0.0800 0.0433 0.0086 0.0691

plM bias 0.0041 -0.0028 -0.0087 0.0049 -0.0034 -0.0109 0.0013 -0.0005 -0.0017

rmse 0.0901 0.0133 0.0827 0.1033 0.0120 0.0800 0.0435 0.0069 0.0694

plD bias 0.0011 0.0088 -0.0004 0.0020 -0.0044 -0.0001

rmse 0.0201 0.1142 0.0120 0.0891 0.0167 0.0717

Table 3: Bias and root mean square errors (rmse) of the estimates when µ = 0, φ = 0.1,

σ2 = 1.

as suggested by inspecting the empirical semi-variogram in Figure 5.

The parameter θ = (τ 2, σ2, φ)ᵀ is estimated with maximum likelihood, tapered likeli-

hood and pla(θ; d), a = C,D,M methods. The distance between two sites are measured

using the great-circle distance and the exponential covariance function is still positive defi-

nite for this distance (Huang et al., 2011). As taper function we use the Bohman taper with

d = 112.654 Km, as in Kaufman et al. (2008). This leads to 0.0063% of non zero values in

the tapered covariance matrix. The same value d has been adopted for the weighted ver-

sion of the pairwise likelihood. However the estimates that we obtained using the pairwise

likelihood based on difference using d were unrealistic. Note that the difference pairwise

likelihood estimates can be calculated by nonlinear weighted least squares in the model

(Z(si)− Z(sj))
2 = 2γ(si − sj; θ) + εi,j, εi,j ∼ N(0, 8γ(si − sj; θ)2)

where γ(si − sj; θ) is the semi-variogram model. Since plD is basically based on semi-

variogram the selection of the distance d requires some care after considering Figure 5.

The distance d = 112.654 Km seems too limiting for catching the actual behavior of the

variogram so we fixed a different distance, namely d = 3× 112.654 in plD(θ, d).

19
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’Simple’ weighted composite likelihoods III

• Practical implementation (Bevilacqua et al., 2012)

I Get a consistent estimate for θ, θ̃
I Estimate G (θ, d) by Ĝ (θ̃; d)
I We choose the ‘lag’ d minimizing [Ĝ (θ̃; d)]−1 in the partial

order of nonnegative definite matrices or equivalently

d∗ = argmin
d∈D

tr[Ĝ (θ̃; d)]−1

where D is a set of space-time lags.
I Maximize

c`m(θ; z) =
∑

i>j

wij(d
∗) log f (zi , zj ; θ)



gaetan@unive.it

Joint composite estimating functions I

• First partition R = {(s1, t1), . . . , (sn, tn)} into three subsets
I RS with pairs (si , ti ),(sj , tj), i 6= j differing only in locations i.e.

si 6= sj , and ti = tj
I RT with pairs differing only in time i.e. si = sj , and ti 6= tj
I RC with pairs (cross-pairs) differing in time and in space i.e.

si 6= sj , and ti 6= tj

Joint Composite Estimating Functions 5

ΨCL.θ/= ∑
k∈Dn

fk{d.k/;θ},

where d.k/ are implicitly treated as being independent.
Alternatively, one may stack the individual composite score function terms into a column

vector ν.θ/={fk{d.k/;θ}}k∈Dn , from which the estimating function is given by

E{ν̇.θ/}T cov{ν.θ/}−1ν.θ/=0:

As pointed out by Kuk (2007), this version of composite estimating equations effectively ac-
counts for the correlations between the differences. However, the calculation of cov{ν.θ/}
and its inverse is computationally prohibitive when the number of pairs (or differences) is
large.

To improve on the existing CL methods and to incorporate correlations between the pairs in
the estimation, we propose a new approach, i.e. we construct three sets of estimating functions by
using the spatiotemporal characteristics of the data. Specifically, we first partition Dn into three
subsets, namely DS,n, with pairs differing only in locations, DT ,n, with pairs differing only in
time and DC,n, with pairs differing in both locations and time. Hence Dn =DS,n ∪DT ,n ∪DC,n.
Fig. 1 displays such a partition with the three types of pairs,

(a) for a spatial pair,
(b) for a temporal pair and
(c) for a spatiotemporal cross-pair, in a typical spatiotemporal setting with four locations

observed at two time points.

Summing over all pairwise differences of spatial pairs across all time points, we obtain the
following spatial composite estimating function (CEF):

ΨS,n.θ/= 1
|DS,n|

∑
i∈DS,n

fi {d.i/;θ},

where, for any set A, |A| denotes the number of elements in A. In a similar fashion, we construct
the temporal CEF:

Time 1

Time 2

(a)

(c)

(b)

Fig. 1. Configurations of spatiotemporal pairs: the upper plane represents four locations observed at time
1, and the lower plane represents the same four locations observed at time 2; (a) is the spatial pair, (b) the
temporal pair and (c) the spatiotemporal cross-pair

(a) spatial pair, (b) temporal pair, (c) the spatiotemporal
cross-pair
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Joint composite estimating functions II
• Define c`A(θ; z) =

∑
(i ,j)∈A wij log f (zi , zj ; θ) we have

c`m(θ; z) = c`S(θ; z) + c`T (θ; z) + c`C (θ; z)

complete = space + time + space-time

• Composite likelihood estimate θ̂CL solve the estimating
equation

u(θ; z) = 0

uS(θ; z) + uT (θ; z) + uC (θ; z) = 0
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Joint composite estimating functions III
• Instead stack the subset composite score functions into the

vector g(θ, z) = (uS(θ; z), uS(θ; z), uC (θ; z))

• weighted quadratic objective function (looks like GMM
(Hansen, 1982))

Q(θ; z) = g(θ, z)>W (θ)g(θ, z)

where W (θ) = DVar [g(θ,Z)]D and
D = diag(

√
|RS |,

√
|RT |,

√
|RC |)⊗ I (adjustement for

different size)

• the joint composite estimating function (JCEF) estimator (Bai
et al., 2012)

θ̂JCEF = argmaxθQ(θ; z)
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Joint composite estimating functions IV

• More efficient than ’simple’ weighted composite likelihood for
a fixed d

• More computational demanding

I Require at each time an evaluation of Var [g(θ,Z)]
I Var [g(θ,Z)] can be derived analytically for GRF, given the

large number of possible pairs, computing it on the basis of
analytic formulae is not practically feasible.

I estimation of this matrix is typically achieved by subsampling
techniques

• Model selection and hypothesis testing ?
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Big data: block composite likelihoods I

• Estimation and prediction for spatial data (Eidsvik et al.,
2014)

• A framework that allows parallel computing

• Similar approaches: Vecchia (1988); Stein et al. (2004);
Caragea and Smith (2006).

• Partition a region D into M blocks D1, . . . ,DM , denote
zDk

= {zi , i ∈ Dk}
• Provide that the number of locations in Dk ∪ Dl is no so large

for evaluating f (zDk
, zDl

; θ)...

c`B(θ; z) =
∑

l>k

log f (zDk
, zDl

; θ)

(log) block composite likelihood (pairwise composite
block-likelihood)
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Big data: block composite likelihoods II

• for M = 1 or M = 2 full likelihood, M = n pairwise likelihood

• M: trade-off between computational and statistical efficiency.

• Nk the neighbors of block k , N→k = {l > k} ∩ {l ∈ Nk}

c`B(θ; z) =
M−1∑

k=1

∑

l∈N→
k

log f (zDk
, zDl

; θ)
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Figure 1. Observation sites illustrated by “.” and predictions sites by “x.” A block CL splits the spatial domain
into regular (a) or irregular (b) blocks. Each block communicates pairwise with each of its neighbors. For the
regular grid (a), an interior block has eight neighbors. For a random or adaptive grid (b), the number of neighbors
varies. In both displays, the block indexed 12 has four neighbors with higher indices (black edges).

Equation (3) is only evaluated over l ∈ N→
k , so that

�CL(Y ; β, θ ) =
M−1∑
k=1

∑
l∈N→

k

[
− 1

2
log |�kl| − 1

2
(Y kl − Xklβ)t�−1

kl (Y kl − Xklβ)

]

=
∑

j

[
− 1

2
log |�j | − 1

2
(Y j − Xjβ)t�−1

j (Y j − Xjβ)

]
. (5)

The shorthand notation with index j represents the set of edges (k, l) | l ∈ N→
k . For instance,

in Figure 1(a), the set of j = (k, l)’s is (1, 2), (1, 6), (1, 7), (2, 3), (2, 6), . . . , (24, 25). The
edge notation induces the corresponding shorthand for the block-pair variables �j = �kl ,
Y j = Y kl , and Xj = Xkl defined in Equations (3) and (4).

For data on a regular grid, and with a regular block design, the relative distances between
sites in block-pairs are the same, giving identical covariance matrices �j for all equal-
configuration block-pair neighbors j = (k, l), under stationarity and isotropy assumptions
on the random field. In this case, only a few required determinants and inverses need to be
computed for every block CL evaluation. We note that other methods (in particular spectral
methods) can also exploit regular grids for additional speed-ups.

2.3 GUIDELINES FOR BLOCKING

The optimal blocking will depend on the sampled spatial locations as well as the spatial
correlation model and therefore cannot be determined in general. Nonetheless, we provide
guidelines on how to create the blocking structures that performed well in our experiments.

The aim is to maximize the number of blocks (for computational speed), while minimiz-
ing the correlation between observables not in a block-pair (for statistical efficiency). We
recommend computing the empirical variogram first, and to use this for selecting the blocks.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f G

ue
lp

h]
 at

 0
6:

15
 1

9 
A

ug
us

t 2
01

4 

Source: Eidsvik et al. (2014)
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Big data: block composite likelihoods III

Recommendation for creating blocks

• check the spatial dependence and possible anisotropies with
empirical variogram

Computational efficiency

• nk = c (fixed number of observations in a block)

• O(c3M|N→k |) i.e. O(n)

Concurrent approach:

• Fixed-rank kriging (Cressie and Johannesson, 2008): O(n)

• Gaussian Markov random fields (Lindgren et al., 2011):
O(n3/2) for two-dimensional spatial data and O(n2) for three
spatial dimensions
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Software development (in R)

• is R a convenient framework for development of composite
likelihood software?

• coding in R: (block) pairwise (marginal or conditional)
likelihood needs parallellizable bivariate functions in way to
avoid slow loops

• Graphical processing unit

• more efficient (?) coding composite likelihoods and derived
quantities in low-level languages such as Fortran or C and
then call into R

• efficient numerical algorithms for low-dimension integration
(for non Gaussian data)

• what is already available in R: CompRandFld package for GRF
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Challenges as final remarks

• ”Design” issues: which terms should be included and how
they have to be combined ?

I Preliminary analysis

• Big data: parallel inference ?

• Precise estimation of uncertainty of composite likelihood
estimates

• Calibration: how to calibrate test statistics ?

• Composite likelihood in hierarchical model ?
I Composite expectation-maximization algorithm

• Can we use composite likelihoods ideas in prediction?
I Composite kriging ?
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Thanks !

Merci !

Grazie !
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à longue portée et estimation par log-périodogramme. Ph.D. thesis, Université Paris VII, Paris.
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