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General framework

In several cases models have complex interdependencies
and/or we deal with large dataset.
Joint distribution of the data may be difficult to evaluate, or
even to specify!
Typical difficulties arise from the need to invert large matrices
when we deal with large dataset and/or from approximation of
intractable integrals
Ancient Roman’s principle:

dividi et impera
('diviser pour regner’, Louis XI )
Idea: if computing likelihoods for certain subsets of the data is
possible, then one may construct a pseudolikelihood by
combining such likelihood objects and use this as a surrogate
for the ordinary likelihood
Review paper: Varin et al. (2011)
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Example: spatio-temporal Gaussian data |

s € RY is a spatial location, t € R is a time point

Observations z = (z(s1, t1), ..., z(sn, tn))’ from a Gaussian
Random Field (GRF) {Z(s, t)}

Weakly stationarity
cov(Z(s,t), Z(s',t')) = C(h,u;0)

(h=s— ¢, spatial lag, u =t — t/ temporal lag).

Likelihood computation requires inversion of n X n covariance
» O(n®) operations, O(n?) memory
> If n large, this may be unfeasible!
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Example: spatio-temporal Gaussian data |l

e Two possible strategies:
1. simplify the model:

> approximate with a Gaussian Markov Random Field (Lindgren
et al., 2011) requiring roughly O(nlog n) operations

> approximate with low rank methods (Cressie and
Johannesson, 2008) O(n)

2. keep your model but simplify the fitting method: e.g. Curriero
and Lele (1999) estimate 6 from the pseudolikelihood

PL(0:2) = [] Flz(si. 1) — 2(s1. 1) O)wisi. 7,57, 1)

i>j
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Example: spatio-temporal non-gaussian data |

Generalized linear geostatistical models (latent Gaussian
models)

E(Z(s,t)|U(s, 1)) = g ! (x(s, t)'B+ U(s, t))

where {U(s, t)} is a latent GRF.
In general, the likelihood involves an n-dimensional integral

L3, 0.02) = |zl 5.5) (s 0)d

Monte Carlo methods: MCEM, MCMC, etc. may be
time-consuming even for moderate n

» INLA method (Rue et al., 2009) = see Thomas’s talk
Simpler: pseudolikelihood constructed from bivariate margins

PL 9 Z H f 5“ t: SJ, tj); e)w(si,tj,sj,tj)
i>j
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Example: spatio-temporal extreme values |

e Observations z = (z(s1, t1), ..., z(sn, tn)) are maxima
recorded values

e Classical extreme value theory says that the marginal
distribution can be modeled by the GEV distribution

Pr(Z(s,t) < z) = exp [—{1 +&(z— M)/g}—l/s]

withpeR, £ €R, 0 >0and {1+&(z—p)/o} > 0.
e Unit Fréchet margins (i.e. u=§=0=1)

Pr(Z(s,t) < z)=exp[-1/Z]
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Example: spatio-temporal extreme values Il

e A max-stable process (de Haan, 1984), is the extension for
maxima of independent replications of (space-time) random
fields.

e Suppose unit Fréchet margins. Finite dimesional distribution

Pr(Z<z) = Pr(Z(si,t1) <z1,...,2Z(sn, tn) < zp)
= exp(=V(z))
V(z) is a positive function such that V(a='z) = aV/(z) for
anya>0andz>0
e Assume a parametric model

Pr(Z < z) = exp(—V(z;0))

the likelihood corresponds to the derivative with respect to all
components of z.
» The number of terms is the B, Bell number, around 8.3 x 1010
for n =17



gaetanQunive.it

Composite likelihood: definition

Consider
1. a statistical model {f(z; 0),zeR".0c©C RP};
2. a set of measurable events {Ay; k=1,...,K};

3. the associated likelihoods L, (6;z) = f(z € Ax; 0).

Then, a composite likelihood (CL) is the weighted product of the
likelihoods corresponding to each single event,

K
CL(6:2) = [ ] £«(6:2)™,
k=1

where {wy; k =1,..., K} are positive weights.
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Composite conditional likelihood

Notation z; = z(sj, ti), zp = {z, j € D}, D C {1,...,n} and
D is a set of D.

CCL(0; 2) H f(zplzpe; 0
DeD

Besag's pseudolikelihood (Besag, 1974)

CCL(6;z) Hf z(sj)|zai; 0)

0; neighborhood of s;

Spatial GRF: Vecchia (1988), Stein et al. (2004)
Limited number of space-time applications

» Mixed states spatio-temporal auto-models on regular lattice
(Hardouin and Crivelli, 2011)
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Composite marginal likelihood

e More commonly used
CML(0;2) = [ f(zp:0)
DeD
e Independence likelihood (Smith, 1990; Chandler and Bate,

2007) where the sets D are disjoint
» 0 = (0s,07)" and inference about Os

CML(6;2) Hf(z 10s)

with z(t) = (z(s1, t), ..., z(sk, ))
e pairwise likelihood: Hf(z,-,zj;e)
i>j
e tripletwise likelihood,.. ., " blockwise” likelihood
e pairwise differences (for GRF): H f(zi — z;0)

i>j
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Hybrid methods

e hybrid pairwise likelihood: Kuk (2007)

» optimal estimating equations for marginal parameters
» pairwise likelihoods for estimating dependence parameters
» no examples for space-time examples yet !

e joint composite estimating functions : Bai et al. (2012)
> space-time example, see later.
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Composite likelihood quantities |

e Composite log-likelihood
cl(6;z) = log CL(6; 2) Zlogék (6; 2)

e Composite score

K K
ZlogVEkGZ Zukﬂzwk,:E[u( Z)]=0
k=1 k=1

e Maximum composite estimator ¢

cl(Ocr;z) > cl(0;2), YHe®©
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Composite likelihood quantities Il
e Godambe (or sandwich) information

G(0) = H(8)J(0)LH(9)

» Sensitivity matrix: H(0) = E[-Vu(0; Z)],
A=—-Vu(lc;2)

» Variability matrix: J(0) = Var[u(6; Z)]
How to estimate 7
» Misspecification H(6) # J(0)
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Asymptotics |

e Two types of asymptotic frameworks
> fixed domain

> fill a space-time region with a sequence of observed locations
> no results
> increasing domain:
> expand a a space-time region for recover more observed
locations
> regular lattice: Ry C (—3, 31",
Ro={(s1,t1),...,(sn ta)} = (AaRo) N Z7*
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Asymptotics Il

e Idea: log-composite likelihood is an additive contrast function
(Hardouin, 1992; Guyon, 1995)

1
Un(0) = ra Z log f(z € Ax; 0)w
e mixing conditions on {Z(s, t)}
o Ocy is asymptotically Gaussian

G(O) (A — 6°) -2 N(0, 1)

e 0* is the minimizer of the composite Kullback-Leibler
divergence

CKL(0; g,f) = Z Eg{logg(Z € Ax) — log f(Z € Ax; 6) }wy
K
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Asymptotics I

e consistency if all composite likelihood "blocks™ correctly
specified

360 such that f(z € Ax; 0) = g(z € Ax) Vk e K

e Space-time examples:

» GRFs: Bevilacqua et al. (2012); Bai et al. (2012)
» Max-stable processes: Davis et al. (2013)
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Hypothesis testing
Null hypothesis Hp : 1) = 19 where 8 = (1, 7) and ¢ € RY

e Wald-type statistics (no invariance under reparameterization)
e Score-type statistics (numerical instability)

e Composite likelihood ratio statistics
W = 2{ct(fci; z) — cl(tho, Fer(vo)i 2)}

» Non standard distribution

q
d
W5 A,

j=1

A1 >,...,> ), eigenvalues of (H¥¥)~1 Gy, (Kent, 1982;
Guyon, 1995)

» How to calibrate W 7 Spatial example in Cattelan and Sartori
(2014)
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Model selection

e Model selection based on Akaike-type criterion (Takeuchi,
1976)

e composite likelihood information criterion (Varin and Vidoni,
2005) A
CLIC = =2cl(fc1;z) +2dim(8)

e composite Bayesian information criterion (Gao and Song,
2010) A
CBIC = —2cl(fcy; z) + log(n) dim(0)

o effective number of parameters
dim(0) = tr(H(9)J7(9))

e CLIC has a tendency to select over-complicated models.
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Model selection: example |

100 independent simulations from a zero mean space-time
Gaussian process with covariance function C(h, u; 0)

e two space-time grids: S x T, where S = [-2,...,3]? and
T ={1,..., T} with T = 100,200,

Z(S,', t,') - Z(Sj, tj) ~ N(O, 2’)’(5; —Sj, ti — tj)) with
v(h,u) = C(0,0;0) — C(h, u;0)

pairwise difference likelihood

PL(;z) = [ [ f(z(si ti) — 2(s}, )): 6)

i>j
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Model selection: example |l

model A Double exponential model (separable model)

hil S lul
C(h,u;0) = o? _gliAl
(hyu;0) =0 exp( 3 ; b

model B Gneiting model

o? Al
C(hyu;0) = —crma———eXPy ——5grma 0 (>
()= {a<2‘”z“+1>6/2

with 8 = 0 (separable model)
model C Gneiting model with 8 # 0;



gaetanQunive.it

Model selection: example Il

Identified
T=100 T=200
Model | (A) (B) (€) | (A) (B) (©)
(A) 84 10 6 96 2 2

True | (B) 8 70 22| 5 8 13
(€) | 9 19 72| 3 12 85

» at least 70% of the models have been correctly identified.
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Large data set: around 150000 observations
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All that glisters is not gold...
The Merchant of Venice, W. Shakespeare |

e variability matrix J(6) = Var[u(60; Z)] key ingredient for
> evaluating uncertainty of composite likelihood estimates
> test statistics
» information criteria for model selection
e the simpler case is when there are T independent replicates
(in time, for instance) z(t) = (z(s1, t),. .., z(sk, t))

;
J== Z (Omc: 2(t))u(Omc; z(t)) "
i—1

» space-time models for extreme values (Huser and Davison,
2014)
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All that glisters is not gold...
The Merchant of Venice, W. Shakespeare [

e more stable to estimate directly the variance matrix of Oct by
bootstrap but computational demanding (Bags of little
bootstrap ?, Kleiner et al. (2014))

e much harder when there is no replication in space or time

e analytic expressions are possible only for few special cases
(spatial GRF, Bevilacqua and Gaetan (2014)) but too
computational demanding (O(n%))

e resampling methods based on idea of some form of "internal
replication” (block-bootstrap, window subsampling)

» difficult to specify tuning parameters (block dimension)
» arduous with irregularly spaced temporal and spatial
observations
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Composite likelihood design |

e How to choose among many possible composite likelihoods?
e for example, which is preferable between
> the pairwise marginal likelihood

clm(b;2) = Z wijlog f(z;, z;; 0)
i>j
» the conditional likelihood
clc(0;2z) = Z wij log f(zi|zj; 6)
i#]
» the pairwise difference likelihood (for GRF)
cly(0;2) = Z wjj log f(z; — z;;6)
i>j
e Same computational burden: O(n?)
e In large settings: should all possible pairs be included?
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Weighted composite likelihoods

When efficiency is low, unequal weighting of likelihood
components can be used to obtain some improvement

Optimal weights computationally impractical
It sensible to assume wj; = w;; for ¢/, and clqy

If W,'j = Wj,' and Wi = 1
clc(0;2) =2clm(0;2) — (n— 1) Zlogf zi; 0

» When the marginal parameters are known, marginal and the
conditional pairwise likelihood have the same efficiency.

in space-time setting underweight observations that are far
apart in time and/or space
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'Simple’ weighted composite likelihoods |

e weights based on the distances.

1 |lsi—si|| < ds,|ti —t]| < d:yy, d=(ds,d;)
wi(d) = IIs S.I.H— s | i < dy (ds, dy)
0 otherwise

e lIsotropy ?



'Simple’ weighted composite likelihoods Il
e Spatial setting results (Bevilacqua and Gaetan, 2014)

el

010

000 005 o5 10 15 20
aistance percentage
Exponential model Cauchy model ‘Wave model
I ) o 1 ) o? " b o?
ML bias | 0.0037 -0.0015 -0.0067 | 0.0044 -0.0010 -0.0041 | 0.0012 -0.0001 -0.0022
rmse | 0.0843  0.0114  0.0792 | 0.0973  0.0089  0.0758 | 0.0409  0.0027  0.0648
TAP bias | 0.0039 -0.0013 -0.0074 | 0.0048 -0.0015 -0.0096 | 0.0011 -0.0026 -0.0022
rmse | 0.0851 0.0129  0.0791 | 0.0989  0.0094  0.0767 | 0.0420 0.0155  0.0675
ple bias | 0.0041 -0.0028 -0.0089 | 0.0050 -0.0034 -0.0110 | 0.0013 -0.0010 -0.0020
rmse | 0.0900 0.0133  0.0826 | 0.1033  0.0120  0.0800 | 0.0433  0.0086  0.0691
plar bias | 0.0041 -0.0028 -0.0087 | 0.0049 -0.0034 -0.0109 | 0.0013 -0.0005 -0.0017
rmse | 0.0901 0.0133  0.0827 | 0.1033  0.0120  0.0800 | 0.0435  0.0069  0.0694
plp bias 0.0011  0.0088 -0.0004  0.0020 -0.0044  -0.0001
rmse 0.0201 0.1142 0.0120  0.0891 0.0167  0.0717

gaetan@unive.it
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'Simple’ weighted composite likelihoods Il

e Practical implementation (Bevilacqua et al., 2012)

» Get a consistent estimate for 0, ]

» Estimate G(6,d) by G(0; d)

» We choose the ‘lag’ d minimizing [G(#; d)]~" in the partial
order of nonnegative definite matrices or equivalently

d* = argmintr[G(F; d)]?
deD

where D is a set of space-time lags.
» Maximize

clm(0;2) = Z w;i(d*) log f(z;, z;; 0)

i>j
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Joint composite estimating functions |

e First partition R = {(s1,t1),...,(sn, tn)} into three subsets
» Rs with pairs (s;, t;),(sj, t;), i # j differing only in locations i.e.
si# s, and t; = t;
» Rt with pairs differing only in time i.e. 5; =s;, and t; # t;
» Rc with pairs (cross-pairs) differing in time and in space i.e.
si # 55, and t; # t;

(b)

(a) spatial pair, (b) temporal pair, (c) the spatiotemporal
cross-pair



Joint composite estimating functions Il
o Define cla(6;2) = >_(; jyea wij log f(zi, zj; ) we have

clm(0;z) = cls(0;2) + clr(0;2) + clc(8;2)

complete = space + time + space-time

e Composite likelihood estimate HACL solve the estimating
equation

ul;z) = 0
us(0;z) + ur(6;z) + uc(6;z) =

gaetanQunive.it
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Joint composite estimating functions Il
e Instead stack the subset composite score functions into the
vector g(0,z) = (us(0;z), us(0;2), uc(0; z))
e weighted quadratic objective function (looks like GMM
(Hansen, 1982))

Q(0:2) = g(0,2)" W(0)g(0.2)

where W(0) = DVar[g(0,Z)]D and
D = diag(\/|Rs|, v/IR7|, V/IRc|) ® I (adjustement for
different size)

e the joint composite estimating function (JCEF) estimator (Bai
et al., 2012)
0 cer = argmaxy Q(0; z)
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Joint composite estimating functions IV

e More efficient than 'simple’ weighted composite likelihood for
a fixed d

e More computational demanding

» Require at each time an evaluation of Var[g(0, Z)]

» Var[g(0,Z)] can be derived analytically for GRF, given the
large number of possible pairs, computing it on the basis of
analytic formulae is not practically feasible.

» estimation of this matrix is typically achieved by subsampling
techniques

e Model selection and hypothesis testing ?
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Big data: block composite likelihoods |

e Estimation and prediction for spatial data (Eidsvik et al.,
2014)
e A framework that allows parallel computing

e Similar approaches: Vecchia (1988); Stein et al. (2004);
Caragea and Smith (2006).

e Partition a region D into M blocks D1, ..., Dy, denote
Dy = {Z,', i € Dk}
e Provide that the number of locations in Dy U D; is no so large
for evaluating f(zp,,zp,; 0)...

clp(0;z) Zlogf zp,,zp,; )
I>k

(log) block composite likelihood (pairwise composite
block-likelihood)
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Big data: block composite likelihoods I

e for M =1 or M = 2 full likelihood, M = n pairwise likelihood

e M: trade-off between computational and statistical efficiency.
={l>k}n{le N}

o Ny the neighbors of block k, N,*

M—1
clg(0;z) = Z Z log f(zp,,zp,; 0)

k=1 IeNy

ggggggggggg

Northing

in asiin
(a) (b)

Source: Eidsvik et al. (2014)
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Big data: block composite likelihoods Il

Recommendation for creating blocks

e check the spatial dependence and possible anisotropies with
empirical variogram

Computational efficiency
e ny, = c (fixed number of observations in a block)
e O(c3MIN?|) ie. O(n)
Concurrent approach:
e Fixed-rank kriging (Cressie and Johannesson, 2008): O(n)

e Gaussian Markov random fields (Lindgren et al., 2011):
O(n3/?) for two-dimensional spatial data and O(n?) for three
spatial dimensions
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Software development (in R)

is R a convenient framework for development of composite
likelihood software?

coding in R: (block) pairwise (marginal or conditional)
likelihood needs parallellizable bivariate functions in way to
avoid slow loops

Graphical processing unit

more efficient (?) coding composite likelihoods and derived
quantities in low-level languages such as Fortran or C and
then call into R

efficient numerical algorithms for low-dimension integration
(for non Gaussian data)

what is already available in R: CompRandFId package for GRF
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Challenges as final remarks

"Design" issues: which terms should be included and how
they have to be combined ?

> Preliminary analysis
Big data: parallel inference 7
Precise estimation of uncertainty of composite likelihood
estimates
Calibration: how to calibrate test statistics ?
Composite likelihood in hierarchical model ?
» Composite expectation-maximization algorithm
Can we use composite likelihoods ideas in prediction?
» Composite kriging ?



Thanks !

Merci |

Grazie !
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