Basics and recent developments on spatio-temporal point processes

Edith Gabriel

Journée RESSTE

Paris, November 2017

Point process = random point field.

Spatio-temporal point process

- Involves temporal as well as spatial dispersion of points.
- Stochastic process governing the location and time of presence of points, so called *events*, where the number of such events is also random.

Spatio-temporal point pattern

Realization of a spatio-temporal point process, usually restricted to a spatio-temporal region $W_S \times W_T \subset \mathbb{R}^d \times \mathbb{R}$, $d \ge 1$ (in the following, d = 2).

It is described as a collection of pairs (s_i, t_i) , i = 1, ..., n where s_i and t_i are the location and time of occurrence associated with the *i*th event.

Basic questions

- Is the point pattern clustered/random/regular?
- Is there any interaction between events?
 - ⇒ Analyzing spatio-temporal point process data : Edith, Ottmar and Francisco

- Which model for the underlying point process?
- How to fit its parameters?
 - ⇒ Modeling and inferring spatio-temporal models : Thomas, Samuel

Second-order analysis of spatio-temporal point process data Moment measures and related quantities Statistics for STPPs

Estimation of the second moment measures

Estimation and prediction of the intensity

3 realisations : not many differences at first sight

 \Rightarrow How to catch differences?

Plotting the data : first step of any exploratory analysis

Illustrations (and analyses) from the \mathbb{Q} package $\frac{stpp^{1}}{stpp^{1}}$

Data : UK 2001 foot-and-mouth disease

- Daily reports of confirmed cases : First case 19 February 2001; last confirmed : 30 September 2001
- 44 counties affected : more severely in Cumbria About 648 animal-holding farms (•) suffered cases over the 5153 (·)

^{1.} Gabriel, Rowlingson and Diggle (2013) Journal of Statistical Software, 53(2):1-29.

E. Gabriel

Static plot (1)

Separate plots of locations s_i and times t_i , $i = 1, \ldots, n$

2001 FMD : Locations and cumulative distribution of times

Static plot (2)

Time treated as a quantitative mark attached to each location : Locations are plotted with the size and/or colour of the plotting symbol determined by the value of the mark.

Former (o) to latter (o) cases

Static plot (3)

Times and locations as marks (see Francisco's talk)

Static plot (4)

Plots of locations within time-intervals

Static plot (4)

 \ldots can also be superimposed over the previous events (•)

Dynamic plot (1)

2D : animation

Events at time t and at time < t.

On spatio-temporal point processes E. Gabriel

Dynamic plot (2)

3D

Plotting the data is not enough

\Rightarrow Develop (suitable) statistical tools.

Second-order analysis of spatio-temporal point process data

On spatio-temporal point processes

Notations

• Φ ou Φ_W : point process observed in $\in W = W_S \times W_T \subset \mathbb{R}^2 \times \mathbb{R}^+$

•
$$x_i = (s_i, t_i)$$
: the ith event,

• $\Phi(B) = \sum_{x \in \Phi} \mathbb{I}_W(x)$: number of points of Φ within the set B.

First-order moment

Intensity measure and intensity

The intensity measure Λ of Φ is defined by

 $\Lambda(B) = \mathbb{E}[\Phi(B)]$, for Borel sets *B*.

Under some continuity conditions, $\Lambda(x)$ has density $\lambda(x)$, which is called *intensity function*.

$$\Lambda(B) = \int_B \lambda(x) \, \mathrm{d}x.$$

First-order moment

Intensity

Probability of one event within an elementary region :

$$\mathbb{P}[ext{ there is point of } \Phi ext{ in } ds_i imes dt_i ext{ }] = \lambda(s_i, t_i) \, \mathsf{d}s_i \, \mathsf{d}t_i$$

where $ds_i \times dt_i$ is an elementary region centered at (s_i, t_i) , with volume $\nu(ds_i \times dt_i)$.

$$\lambda(s_i, t_i) = \lim_{
u(ds_i imes dt_i) o 0} rac{\mathbb{E}\left[\Phi(ds_i imes dt_i)
ight]}{
u(ds_i imes dt_i)}.$$

A very useful Theorem

An application of Fubini's Theorem :

Campbell Theorem

For any nonnegative measurable function f(x),

$$\mathbb{E}\left[\sum_{x\in\Phi}f(x)\right]=\int f(x)\Lambda(\,\mathrm{d} x)$$

If Φ has an intensity function, then

$$\mathbb{E}\left[\sum_{x\in\Phi}f(x)\right]=\int f(x)\lambda(x)\,\mathrm{d}x.$$

Second-order moment

Second moment measure

The second order intensity measure $\mu^{(2)}$ of Φ is defined by

$$\mu^{(2)}(B_1 \times B_2) = \mathbb{E}\left[\Phi(B_1)\Phi(B_2)\right].$$

So we can write, $\mathbb{C}ov(\Phi(B_1), \Phi(B_2)) = \mu^{(2)}(B_1 \times B_2) - \Lambda(B_1)\Lambda(B_2)$

The second factorial moment measure $\alpha^{(2)}$ of Φ is the intensity measure of all distinct points of Φ :

$$\alpha^{(2)}(B_1 \times B_2) = \mathbb{E}\left[\Phi(B_1)\Phi(B_2)\right] - \mathbb{E}\left[\Phi(B_1 \cap B_2)\right].$$

Applying Campbell's formula for the mean to $\Phi\times\Phi$ leads to

$$\mathbb{E}\left[\sum_{x\in\Phi x'\in\Phi}f(x,x')\right] = \iint f(x,x')\mu^{(2)}(\mathrm{d} x,\mathrm{d} x') \text{ and } \mathbb{E}\left[\sum_{x,x'\in\Phi}^{\neq}f(x,x')\right] = \iint f(x,x')\alpha^{(2)}(\mathrm{d} x,\mathrm{d} x').$$

Second-order moment

Second-order intensity function

The process Φ is said to have second moment density (or a second-order intensity function) λ_2 if

$$\alpha^{(2)}(B_1 \times B_2) = \int_{B_1} \int_{B_2} \lambda_2(x, x') \,\mathrm{d}x \,\mathrm{d}x'.$$

Probability of two events, each within an elementary region :

$$\mathbb{P}\left[\begin{array}{cc} \text{one point of } \Phi \text{ in } ds_i \times dt_i \\ \text{and} \\ \text{one point of } \Phi \text{ in } ds_j \times dt_j \end{array}\right] = \lambda_2((s_i, t_i), (s_j, t_j)) \, \mathrm{d}s_i \, \mathrm{d}t_i \, \mathrm{d}s_j \, \mathrm{d}t_j$$

$$\lambda_2((s_i, t_i), (s_j, t_j)) = \lim_{\nu(ds_i \times dt_i) \to 0, \nu(ds_j \times dt_j) \to 0} \frac{\mathbb{E}\left[\Phi(ds_i \times dt_i)\Phi(ds_j \times dt_j)\right]}{\nu(ds_i \times dt_i)\nu(ds_j \times dt_j)}$$

Second-order moment

Pair correlation function

Relationship between number of events in a pair of subregions

$$g((s_i,t_i),(s_j,t_j))=rac{\lambda_2((s_i,t_i),(s_j,t_j))}{\lambda(s_i,t_i)\lambda(s_j,t_j)}$$

Difficult to estimate \Rightarrow relaxing assumptions.

Usual relaxing assumptions

- First-order stationarity : $\lambda(s_i, t_i) = \lambda$
- First-order separability : $\lambda(s_i, t_i) = \lambda_S(s_i)\lambda_T(t_i)$
- Second-order stationarity :

$$\lambda(s_i, t_i) = \lambda$$
 and $\lambda_2((s_i, t_i), (s_j, t_j)) = \lambda_2(s_i - s_j, t_i - t_j)$

If Φ is also isotropic,

 $\lambda_2((s_i, t_i), (s_j, t_j)) = \lambda_2(r, t)$, with $r = \|s_i - s_j\|$ and $t = |t_i - t_j|$.

Second-order separability :

$$g((s_i, t_i), (s_j, t_j)) = g_S(s_i, s_j)g_T(t_i, t_j)$$

If Φ is also isotropic, $g((s_i, t_i), (s_j, t_j)) = g_S(r)g_T(t)$.

Summary characteristics

Various summary characteristics have been proposed which describe particular features of Φ .

These are typically real number or functions based on inter-point (spatial and temporal) distances.

Their interpretation is a question of experience (and somewhat of an art $!^2$)

2. Stoyan, Kendall & Mecke (1995) Stochastic geometry and its applications. On spatio-temporal point processes E. Gabriel

First-order characteristics : the intensity $\lambda(s, t)$

The **intensity** (= point density) gives a global information about Φ .

 \rightsquigarrow Often associated with large scale inhomogeneity.

It is of little value if alone.

The intensity influences the other summary characteristics.

Second-order characteristics : pcf and K-function

The pair correlation function is $g((s_i, t_i), (s_j, t_j)) = \frac{\lambda_2((s_i, t_i), (s_j, t_j))}{\lambda(s_i, t_i)\lambda(s_j, t_j)}$.

For a 2nd-order stationary and isotropic point process :

$$g(r,t)=rac{\lambda_2(r,t)}{\lambda^2}$$
, with $r=\|s_i-s_j\|$ and $t=|t_i-t_j|$

and the K-function is defined by

 $\lambda \mathcal{K}(r,t) = \mathbb{E}\left[ext{ mean number of points within distances } r ext{ and } t ext{ from any point}
ight].$

~ Often associated with short scale inhomogeneity.

Second-order characteristics give information on many scales of distances. The pcf does not contain more information than K, but is easier for interpretation (as non-cumulative).

Spatio-temporal inhomogeneous K-function³

Second-order intensity reweighted stationarity² (SOIRS) :

 $\lambda(s_i, t_i)$ non-constant and $\lambda_2((s_i, t_i), (s_j, t_j)) = \lambda_2(s_i - s_j, t_i - t_j)$

For a SOIRS process, r, t > 0 and a compact B

$$K(r,t) = \frac{1}{\nu(B)} \mathbb{E}\left[\sum_{(s_i,t_i)\in\Phi\cap B}\sum_{(s_j,t_j)\in\Phi\setminus(s_i,t_i)}\frac{\mathbb{I}_{\{\|s_i-s_j\|\leq r; |t_i-t_j|\leq t\}}}{\lambda(s_i,t_i)\lambda(s_j,t_j)}\right]$$

If the process is also isotropic :

$$\mathcal{K}(r,t) = \iint g(u,v) \mathbb{I}_{\{u \le r; v \le t\}} \, \mathrm{d} u \, \mathrm{d} v = 2\pi \int_{-t}^{t} \int_{0}^{r} g(u,v) u \, \mathrm{d} u \, \mathrm{d} v$$

Time-directional version :

$$K(r,t) = 2\pi \int_0^t \int_0^r g(u,v) u \,\mathrm{d} u \,\mathrm{d} v$$

3. Gabriel & Diggle (2009), Statistica Neerlandica, 63:43-51.

On spatio-temporal point processes E. Gabriel

Second-order analysis of spatio-temporal point process data

Distance and contact distribution functions

Two distribution functions of the distance ·

- from a point $ullet = (s_o, t_o)$ of Φ
- from any point $ullet = (s^*, t^*)$ in W

Nearest neighbor distance :

$$G(r,t) = \mathbb{P}[d((s_o,t_o),\Phi \setminus \{(s_o,t_o)\}) \leq (r,t)] = 1 - \mathbb{E}^{\mathbb{I}(s_o,t_o)} \left[\prod_{(x_i,t_i) \in \Phi} \left(1 - \frac{\bar{\lambda} \mathbb{I}\{\|s_i - s_o\| \leq r; |t_i - t_o| \leq t\}}{\lambda(s_i,t_i)} \right) \right]$$

Empty space function :

$$H(r,t) = \mathbb{P}[d((s^*,t^*),\Phi) \le (r,t)] = 1 - \mathbb{E}\left[\prod_{(x_i,t_i)\in\Phi}\left(1 - \frac{\bar{\lambda}\mathbb{I}\{\|s_i - s^*\| \le r; |t_i - t^*| \le t\}}{\lambda(s_i,t_i)}\right)\right]$$

E.g : for clustered patterns, G gives information on the distances of the points within clusters and H describes the extent of empty space between clusters.

Spatio-temporal inhomogeneous J-function⁴

$$J(r,t)=\frac{1-G(r,t)}{1-H(r,t)},$$

with

- $G(r, t) = \mathbb{P}[d((s_o, t_o), \Phi \setminus \{(s_o, t_o)\}) \le (r, t)]$ the nearest neighbor distance - and $H(r, t) = \mathbb{P}[d((s^*, t^*), \Phi) \le (r, t)]$ the empty space function :

For a SOIRS process,

$$J(r,t) - 1 \approx -\overline{\lambda} \left(K(r,t) - 2\pi r^2 t \right),$$

with $\bar{\lambda} = \inf_{(s,t)} \lambda(s,t)$.

^{4.} Cronie & van Lieshout (2015) Scandinavian Journal of Statistics, 42(2) :562–579

E. Gabriel

Summary characteristics

Summary characteristics can be used for :

Analyzing the spatio-temporal structure of a point pattern,

Statistic	Homogeneous Poisson process	Regular	Random	Clustered
g(r,t)	g(r,t)=1	< 1	= 1	> 1
<i>K</i> (<i>r</i> , <i>t</i>)	$K(r,t)=2\pi r^2 t$	$\langle 2\pi r^2 t$	$=2\pi r^2 t$	$> 2\pi r^2 t$
$J(r,t) = \frac{1-G(r,t)}{1-H(r,t)}$	G(r,t) = H(r,t)	> 1	= 1	< 1

 \Rightarrow Deviation and pointwise envelop tests.

Model fitting and estimation parameters.

Pointwise envelope tests based on 2^d -order moments

Test of clustering/regularity

 H_0^c : "the pattern is a realisation of a Poisson process with intensity $\lambda(s, t)$." Under H_0^c , g(r, t) = 1 and $K(r, t) = 2\pi r^2 t$

 \Rightarrow Confidence envelopes built from simulations of a $\mathcal{P}ois(\lambda(s,t))$.

Test of interaction

 H_0^i : "the pattern is a realisation of a pair of independent spatial and temporal, second-order intensity reweighted stationary point processes."

Under H_0^i , $K(r, t) \propto K_S(r)K_T(t)$ (second-order separability).

 \Rightarrow Confidence envelopes built by random labelling the locations of events, holding their times fixed.

Deviation tests based on 2^{*d*}-order moments

Deviation measures :

- Integral deviation measure $\int_{t_{min}}^{t_{max}} \int_{r_{min}}^{r_{max}} (T(r,t) T_{H_0}(r,t))^q dr dt$
- Supremum deviation measure $\sup_{(r,t)} |T(r,t) T_{H_0}(r,t)|$

where T can be the K, g, J, ...

 \Rightarrow Monte-Carlo tests with the deviation measure computed from

- the data, T_1 .

- simulations under H_0 , T_i , $i = 2, \ldots, N$.

 T_{H_0} is often replaced by \overline{T} .

Second-order analysis of spatio-temporal point process data

Usual models and simulations

Hypotheses testing is often based on Monte Carlo simulations.

Various spatio-temporal models are implemented in the Q package stpp

Spatio-temporal models

***** Independent processes

- Inhomogeneous Poisson processes are widely used.
- The position of the clusters is fixed.
- There is no interaction between points.

Dependent processes

- There is interaction between points.
- Patterns follow different principles :
 - aggregation : Poisson cluster process, contagious processes, ...
 - regularity : Inhibition process,
 - stochastic environment : Cox process.

Inhomogeneous Poisson process

It is the simplest non-stationary point process.

It is defined by the following postulates :

- 1. The number $\Phi(W_S \times W_T)$ of events within the region $W_S \times W_T$ follows a Poisson distribution with mean $\int_{W_s} \int_{W_T} \lambda(s, t) dt ds$.
- 2. Given $\Phi(W_S \times W_T) = n$, the *n* events in $W_S \times W_T$ form an independent random sample from the distribution on $W_S \times W_T$ with probability density function $f(s, t) = \lambda(s, t) / \int_{W_T} \lambda(s', t') dt' ds'$.

E. Gabriel

Cox process

Definition

- 1. $\{\Lambda(s,t): (s,t) \in W_S \times W_T\}$ is a non-negative-valued stochastic process.
- 2. Conditional on $\{\Lambda(s,t) = \lambda(s,t) : (s,t) \in W_S \times W_T\}$, the events form an inhomogeneous Poisson process with intensity $\lambda(s,t)$.

Log-Gaussian Cox process : $\Lambda(s, t) = \exp(Z(s, t))$ with Z(s, t) a real-valued Gaussian field.

Covariance models c(h, t):

- Separable, non-separable.
- Isotropic, anisotropic.

 $g(r,t) = \exp(c(r,t)).$

Poisson Cluster Process

Definition

- 1. Parents form a Poisson process with intensity $\lambda_p(s, t)$.
- 2. The number of offspring per parent is a random variable N_c with mean m_c , realised independently for each parent.
- The positions and times of the offspring relative to their parents are independently and identically distributed according to a trivariate probability density function f(·) on ℝ² × ℝ⁺.
- 4. The final process is composed of the superposition of the offspring only.

Poisson Cluster Process

$$g(r,t) = 1 + \frac{\alpha}{8\pi\sigma^2\nu} \exp\left(-\frac{r^2}{4\sigma^2} - \alpha t\right),$$

$$\mathcal{K}(r,t) = 2\pi r^2 t + \frac{1}{2\nu} \left(\exp(\alpha t) - \exp(-\alpha t)\right) \left(1 - \exp\left(-\frac{r^2}{4\sigma^2}\right)\right).$$

E. Gabriel

Anisotropic Poisson Cluster Process

Geometric anisotropy : $g(u, t) = g_0\left(\sqrt{u\Sigma^{-1}u'}, t\right)$, where $u \in \mathbb{R}^2$ is a row vector with transpose u', Σ is a 2 × 2 symmetric positive definite

matrix of the form $\Sigma = \omega^2 U_{\theta} \operatorname{diag}(1, \zeta^2) U_{\theta}^t$ with $U_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.

Interaction process

Inhibition process :

 \rightsquigarrow Make unlikely the occurrence of pairs of close events.

- \star Simple sequential inhibition process
 - 1. s_1 and t_1 are uniformly distributed in W_S and W_T respectively.

2. At the *k*th step of the algorithm, k = 2, ..., m, $s_k \sim \mathcal{U} [W_S \cap \{s : ||s - s_j|| \ge \delta_s, j = 1, ..., k - 1\}]$ $t_k \sim \mathcal{U} [W_T \cap \{t : |t - t_j| \ge \delta_t, j = 1, ..., k - 1\}].$

 $\delta_{s},\,\delta_{t}$: minimum permissible spatial and temporal distances between events.

* Larger class of inhibition :

Introduce in 2. the probability that a potential point (s, t) will be accepted as a point of the process according to the R most recent events.

Second-order analysis of spatio-temporal point process data

Inhibition process

Interaction process

Contagious process :

- * Simple model :
 - 1. s_1 and t_1 are uniformly distributed in W_S and W_T respectively.
 - 2. At the *k*th step of the algorithm, given $\{(s_j, t_j), j = 1, ..., k 1\}$, $s_k \sim \mathcal{U}[W_S \cap \{s : ||s - s_{k-1}|| \le \delta_s\}]$, $t_k \sim \mathcal{U}[W_T \cap \{t : |t - t_{k-1}| \le \delta_t\}]$,

 δ_s, δ_t : maximum permissible spatial and temporal distances between events.

* Larger class of contagion :

Introduce in 2. the probability that a potential point (s, t) will be accepted as a point of the process according to the R most recent events.

Contagious process

Simple contagious model

Using the retention probability

Infectious process

Infectious disease : can be contracted by a person without their having come into direct contact with an infected person (\neq contagious disease : transmitted only by direct contact.)

Here, an *infectious process* is such that to each infected individual at a time t there corresponds an infection rate h(t), which depends on

- a latent period α ,
- the maximum infection rate β ,
- the infection period γ .
- 1. Choose the location s_1 and time t_1 of the first event.
- 2. Given $\{(s_j, t_j), j = 1, \dots, k-1\}$,

 s_k is either symmetrically distributed around s_{k-1} or is a point in a $\mathsf{Poisson}(\lambda(s)),$

 t_k is either uniformly or exponentially distributed around t_{k-1} .

A potential point is accepted with probability $p_k = f(h(t|t_{k-1}, \alpha, \beta, \gamma)).$

Infectious process

Spatio-temporal modelling

Empirical models : e.g. Cox process

Describe the point pattern without pointing to any particular underlying mechanism

Mechanistic models : e.g. Interaction process

Parameters make the link with generating process.

Properties of the process are specified conditionally on its realization up to the current time.

Conditional intensity function : $\lambda(s, t | \mathcal{H}_t)$,

where \mathcal{H}_t is the history of the process up to time t

See Diggle's 2013 book, Gabriel *et al.* (2013) and Gabriel (2016) papers, and Thomas' talk.

Inference for spatio-temporal models

Method of moments

But in spatial statistics :

- moments often unreachable \Rightarrow (heavy) simulations.
- no solution or not unique.

Minimum contrast method

$$\hat{ heta} = {\sf argmin}_{ heta} \int_{m{a}}^{m{b}} |T_{ heta}(x) - \mathbb{E}[T_{ heta}(x)]|^{eta} \, {\sf d}x$$

Usually : $\beta = 2$, T(x) = K(r, t).

Likelihood-based method

But the likelihood is unreachable, except for Poisson and Gibbs processes, or approximately for Cox processes.

Estimation of the second moment measures

Estimating 2^d-order moments

Non-parametric estimation⁵

$$\begin{split} \widehat{\mathcal{K}}(r,t) &= \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{w_{ij}} \frac{\mathbb{I}_{\{\|s_i - s_j\| \le r \; ; \; |t_i - t_j| \le t\}}}{\lambda(s_i, t_i)\lambda(s_j, t_j)} \\ \widehat{g}(r,t) &= \frac{1}{4\pi r} \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{w_{ij}} \frac{k_s(r - \|s_i - s_j\|)k_t(t - |t_i - t_j|)}{\lambda(s_i, t_i)\lambda(s_j, t_j)}, \end{split}$$

where w_{ij} is an edge correction factor,

 $k_s(\cdot)$, $k_t(\cdot)$ are kernel functions (usually box or epanechnikov kernels).

Illustration of edge effects in 2D

5. Gabriel & Diggle (2009); Gabriel (2014).

On spatio-temporal point processes

E. Gabriel

Estimating 2^d-order moments

Problems :

- (1) Edge effects have to be corrected.
- (2) $\lambda(s, t)$ is not known and have to be estimated.

Edge correction methods⁶

• Isotropic method : $w_{ij} = |W_S \times W_T| w_{ij}^{(s)} w_{ij}^{(t)}$

where $w_{ij}^{(s)}$ is the Ripley's method : proportion of the circumference of a circle centred at the location s_i with radius $||s_i - s_j||$ lying in W_S ,

 $w_{ij}^{(t)} = 1$ if both ends of the interval of length $2|t_i - t_j|$ centred at t_i lie within W_T and $w_{ij}^{(t)} = 1/2$ otherwise.

Border method :
$$w_{ij} = \frac{\sum_{j=1}^{n} \mathbb{I}_{\{d(s_j, W_S) > u \ ; \ d(t_j, W_T) > v\}} / \lambda(s_j, t_j)}{\mathbb{I}_{\{d(s_i, W_S) > u \ ; \ d(t_i, W_T) > v\}}}$$

where $d(s_i, W_S)$ (resp. $d(t_i, W_T)$) denotes the distance between s_i (resp. t_i) and the boundary of W_S (resp. W_T).

• Translation method : $w_{ij} = |W_S \cap W_{S_{s_i-s_i}}| \times |W_T \cap W_{T_{t_i-t_i}}|$,

where $W_{S_{s_i-s_j}}$ and $W_{{\cal T}_{t_i-t_j}}$ are the translated spatial and temporal regions.

E. Gabriel

^{6.} Gabriel (2014) Methodology and Computing in Applied Probability, 16(2):411-431.

Performances wrt edge correction methods

Performance of \widehat{K} and \widehat{g} for (in)homogeneous and/or (an)isotropic point patterns

Highest relative variance efficiency of $\int_0^r \int_0^t (\widehat{T}(u, v) - T(u, v))^2 du dv$ with T = K or T = g obtained for

	Ŕ	ĝ
Homogeneous Poisson process	Border	Border
Inhomogeneous Poisson process	Border	Translation
Isotropic clustered process	Translation	Translation
Anisotropic clustered process	-	Translation
(Weakly) Inhomogeneous clustered process	Translation	Translation
(Strongly) Inhomogeneous clustered process	Border	Border

Analyzing anisotropic point patterns⁷

For a SOIRS process Φ ,

$$\widehat{K}(r,t,\theta) = \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{w_{ij}} \frac{\mathbb{I}_{\{\|s_i - s_j\| \leq r \; : \; |t_i - t_j| \leq t; \mathsf{A}(s_i,s_j) \leq \theta\}}}{\lambda(s_i,t_i)\lambda(s_j,t_j)}$$

with $A(s_i, s_j)$ the least angle between the x-axis and the line defined by s_i and s_j .

If Φ is stationary and isotropic,

$$K(r,t)=K(r,t,2\pi)=2K(r,t,\pi).$$

7. Comas, Rodriguez-Cortes, Mateu (2015) On spatio-temporal point processes E. Gabriel

Analyzing anisotropic point patterns

Testing anisotropic effects⁸

For a SOIRS and isotropic process,

$$O(\theta) = \int_0^\theta \int_{r_{min}}^{r_{max}} \int_{t_{min}}^{t_{max}} \mathsf{d}K(r,t,\varphi) \ / \ \int_0^\pi \int_{r_{min}}^{r_{max}} \int_{t_{min}}^{t_{max}} \mathsf{d}K(r,t,\varphi)$$

is uniform on $[0,\pi)$.

Kolmogorov test based on

$$D = \sup_{\theta \in [0,\pi)} |\widehat{O}(\theta) - \theta/\varphi|.$$

8. Comas, Conde, Mateu (2016)

Analyzing marked point patterns

A marked point process is a point process with characteristics attached to each point.

A spatio-temporal marked point process is random sequence $\{[x_i, m_i]\}$ from which

- the points $x_i = (s_i, t_i)$ together constitute a point process in $\mathbb{R}^2 \times \mathbb{R}^+$,
- the m_i are the marks belonging to a given space of marks \mathbb{M} .

See Ottmar and Francisco talks!

Estimation and prediction of the intensity

Estimating 1st-order moments

Intensity estimation (see e.g. Illian et al., 2008)

Kernel estimation

- Useful when there is no covariates.
- The first-order separability is assumed.

$$\widehat{\lambda}(s,t) = \frac{1}{n}\widehat{\lambda}_{S}(s)\widehat{\lambda}_{T}(t),$$

with $\widehat{\lambda}_{S}(s) = \sum_{i=1}^{n} \frac{k_{h}(s-s_{i})}{c_{W_{S}}(s_{i})}$ and k_{h} a bivariate kernel with bandwidth h and $c_{W_{S}}(s_{i}) = \int_{W_{S}} k_{h}(s-s_{i}) ds$ is an edge-correction factor to guarantee that $\int_{W_{S}} \widehat{\lambda}(s) ds = n$.

Parametric estimation (see Thomas' talk)

Estimating 1st-order moments

Performance of \widehat{g} and $\widehat{\mathcal{K}}$ may be severely altered by $\widehat{\lambda}$:

- → parametric estimation : overparametrisation or overfitting,
- → kernel estimation : incapacity of distinguish 1st and 2^d-order effects from a single realisation of the point process.

 \Rightarrow assumption : $1^{\textit{st}}\text{-order}$ effects operate at larger scale than the 2^d-order effects.

care needed when partitioning spatio-temporal patterns into 1^{st} and 2^d -order effects; the knowledge about the environment is crucial.

Predicting the 1st-order intensity⁹

How to get the intensity outside the observation window?

For a SOIRS point process Φ observed in W and $x_o \notin W$,

$$\widehat{\lambda}(x_o|\Phi_W) = \int \omega(x;x_o) \sum_{y \in \Phi_W} \delta(x-y) \, \mathrm{d}x = \sum_{x \in \Phi_W} \omega(x;x_o)$$

is the Best Linear Unbiased Predictor of $\lambda(x_o|\Phi_W)$, with δ the dirac delta function.

9. Gabriel, Coville & Chadœuf (2017) Spatial Statistics + work in progress with F. Rodriguez, J. Mateu

E. Gabriel

Predicting the 1st-order intensity

The weight function $\omega(x; x_o)$ satisfies the constraint

•

$$\int_W \lambda(x) \omega(x; x_o) \, \mathrm{d}x = \lambda(x_o)$$

and is solution of the Fredholm equation of the second kind :

$$\lambda(x)\omega(x;x_o) + \int_W \lambda(y)\omega(y;x_o)k(x,y)\,\mathrm{d}y = f(x;x_o),$$

with kernel

$$k(x,y) = \lambda(x) \left(g(x-y) - \frac{1}{\int_W \lambda(z) \, dz} \int_W \lambda(z) g(z-y) \, dz \right)$$

and source term

$$f(x;x_o) = \lambda(x)\lambda(x_o)\left(\frac{1}{\int_W \lambda(z)\,dz} + g(x-x_o) - \frac{1}{\int_W \lambda(z)\,dz}\int_W g(z-x_o)\,dz\right).$$

Approximated solution

Finite element approach

The Galerkin method, with T_h a mesh partitioning W and V_h an approximation space, plugged into a weak formulation of the Fredholm equation, leads to :

$$\sum_{j=1}^{N} w_j \int_{W} \left(\varphi_i(x) \varphi_j(x) + \int_{W} \int_{W} k(x, y) \varphi_j(y) \varphi_i(x) \, \mathrm{d}y \right) = \int_{W} f(x; x_o) \varphi_i(x) \, \mathrm{d}x,$$

with $\omega(x; x_o) \approx \sum_{i=1}^{N} w_i \varphi_i(x)$, $N = \dim V_h$ and $\{\varphi_i\}_{i=1,...,N}$ a basis of V_h .

Illustrative results in 2D(1)

Simulation of a Thomas process within $[0, 1] \times [0, 1]$ Parents : $\mathcal{P}ois(\mu)$, $\mu = 50$

Offspring : $\mathcal{P}\textit{ois}(\kappa)$, $\kappa =$ 10, normally distributed, with $\sigma =$ 0.05

Estimation and prediction of the intensity

Illustrative results in 2D (1)

Weight function $\omega(\cdot; x_o)$

 $x_o = (0.38, 0.57)$

Illustrative results in 2D (2)

Simulation of a cluster process within $[0, 10] \times [0, 10]$ Parents : hardcore process with interaction radius 0.5 Offspring : normally distributed, with $\sigma = 0.1$

Application : in 2D

On spatio-temporal point processes

E. Gabriel

Application : in 3D

...work in progress

References

- O. Cronie and M-C. van Lieshout (2015) A J -function for inhomogeneous spatio-temporal point processes. Scandinavian Journal of Statistics, 42(2), 562–579.
- P.J. Diggle (2013). Statistical analysis of spatial and spatio-temporal point patterns, Third Edition. Chapman and Hall.
- E. Gabriel and P.J. Diggle (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica, 63:43–51.
- E. Gabriel, B. Rowlingson and P.J. Diggle (2013). STPP : Plotting, simulating and analysing spatio-temporal point patterns. *Journal of Statistical Software*, 53(2) :1–29.
- E. Gabriel (2014) Estimating second-order characteristics of inhomogeneous spatio-temporal point processes : influence of edge correction methods and intensity estimates. *Methodology and Computing in Applied Probability*, 16(2), 411–431.
- E. Gabriel (2016) Spatio-temporal point pattern analysis and modelling. Encyclopedia of GIS, 2nd Edition.
- E. Gabriel, J. Coville, J. Chadœuf (2017) Estimating the intensity function of spatial point processes outside the observation window. Spatial Statistics (to appear).
- J. Illian, A. Penttinen, H. Stoyan and D. Stoyan (2008) *Statistical Analysis and Modelling of Spatial Point Patterns*. John Wiley & Sons, London.
- D. Stoyan, D., F. Rodríguez-Cortés, J. Mateu, and W. Gille (2017). Mark variograms for spatio-temporal point processes, Spatial Statistics, 20:125–147.