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Point process = random point field.

Spatio-temporal point process

m Involves temporal as well as spatial dispersion of points.

m Stochastic process governing the location and time of presence of
points, so called events, where the number of such events is also
random.

Spatio-temporal point pattern

Realization of a spatio-temporal point process, usually restricted to a
spatio-temporal region Ws x Wt C RY x R, d > 1 (in the following, d = 2).

It is described as a collection of pairs (s;, t;), i =1,...,n where s; and t;
are the location and time of occurrence associated with the ith event.



Basic questions

m Is the point pattern clustered/random/regular?

m Is there any interaction between events?

m Which model for the underlying point process?

m How to fit its parameters?



Motivation

Second-order analysis of spatio-temporal point process data
Moment measures and related quantities
Statistics for STPPs

Estimation of the second moment measures

Estimation and prediction of the intensity



Motivation



Motivation

3 realisations : not many differences at first sight
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= How to catch differences?
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Motivation

Plotting the data : first step of any exploratory analysis

lllustrations (and analyses) from the @ package

Data : UK 2001 foot-and-mouth disease

m Daily reports of confirmed cases :
First case 19 February 2001 ; last confirmed : 30 September 2001

m 44 counties affected : more severely in Cumbria
About 648 animal-holding farms (e) suffered cases over the 5153 (-)

1. Gabriel, Rowlingson and Diggle (2013) Journal of Statistical Software, 53(2) :1-29.
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Motivation

Static plot (1)

Separate plots of locations s; and times t;, i =1,...,n
xy—locations cumulative number
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Motivation

Static plot (2)

Time treated as a quantitative mark attached to each location :
Locations are plotted with the size and/or colour of the plotting symbol determined by

the value of the mark.
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Motivation

Static plot (3)

Times and locations as marks (see Francisco's talk)

Time marks Space marks
15000~
575
550
10000
=
525
5000 -
500 l
ars ol Al L
300 325 350 375 50 100 150 200
x t

On spatio-temporal point processes E. Gabriel



Motivation

Static plot (4)

Plots of locations within time-intervals
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Motivation

Static plot (4)

...can also be superimposed over the previous events (s)
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Motivation

Dynamic plot (1)

2D : animation

Events at time t and at time < t.
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Motivation

Dynamic plot (2)
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Motivation

Plotting the data is not enough
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Second-order analysis

of spatio-temporal point process data



Second-order analysis of spatio-temporal point process data

On spatio-temporal point processes

Notations

m & ou Py : point process observed in € W = Ws x Wy C R x Rt
m x; = (s;, t;) : the ith event,

B &(B) =) colw(x) : number of points of ® within the set B.
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Second-order analysis of spatio-temporal point process data

First-order moment

Intensity measure and intensity

The intensity measure A of ® is defined by

AN(B) =E[®(B)], for Borel sets B.

Under some continuity conditions, A(x) has density A(x), which is called
intensity function.

A(B) = /B A(x) dx.
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Second-order analysis of spatio-temporal point process data

First-order moment

Intensity

Probability of one event within an elementary region :
IP[ there is point of ® in ds; x dt; | = A(s;, t;) ds; dt;

where ds; X dt; is an elementary region centered at (s;, t;), with volume v(ds; x dt;).

. E [<I>(ds,- X dt,')]
i ti) = [ T O aeN
A(S t) l/(dsi;r(?fi)‘)o l/(dS,' X dt,)
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Second-order analysis of spatio-temporal point process data
A very useful Theorem

An application of Fubini's Theorem :

Campbell Theorem

For any nonnegative measurable function f(x),

Zf(x)] = / £(x)A(dx)

xed

E

If ® has an intensity function, then

E f(x)| = [ f(x)A(x)dx.
N
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Second-order analysis of spatio-temporal point process data

Second-order moment

Second moment measure

The second order intensity measure ;(2) of ® is defined by
1P (By x By) = E[®(B1)®(By)] .

So we can write, Cov(®(By), ®(B,)) = u?(By x By) — N(B1)A(Bz)

The second factorial moment measure a(® of ® is the intensity measure
of all distinct points of ¢ :

@ (By x By) = E[®(B;)®(By)] — E[®(B; N By)].

Applying Campbell’s formula for the mean to ® x & leads to

x,x'ed

|:ZZfXX} /fxx dxdx')andE[Z f(xx)} /f(xx)a(2(dxdx').
xEPx' €d
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Second-order analysis of spatio-temporal point process data

Second-order moment

Second-order intensity function

The process @ is said to have second moment density (or a second-order
intensity function) A, if

a(2)(31 X Bs) :/ / Aa(x, x") dx dx’.
B, /B,

Probability of two events, each within an elementary region :

one point of ® in ds; x dt;
P and = /\2((5,’,1’,‘),(Sj, tj)) dS,‘dt,'de dtj
one point of ® in ds; x dt;

E [0(ds; x dt;)®(ds; x dt)]

A isti), (8 t)) =
2((sin 1), () 1)) v(dsix dt;)—0,u(ds;xdt)—0  v(ds; X dt;)v(ds; x dt;)
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Second-order analysis of spatio-temporal point process data

Second-order moment

Pair correlation function

Relationship between number of events in a pair of subregions

_ Aa((si, ti), (57, 7))

g((sia l','),(Sj,tj)) /\(S,',i’,'))\(Sj,tj)

Difficult to estimate = relaxing assumptions.
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Second-order analysis of spatio-temporal point process data

Usual relaxing assumptions

m First-order stationarity : A(s;, t;) = A
m First-order separability : \(s;, t;) = As(s;)A7(t;)
m Second-order stationarity :
A(si, ti) = X and Xo((si, i), (55, tj)) = Aa(si — sj, ti — tj)

If & is also isotropic,
A2((si, t7), (SJ, Q)) = Xo(r, t), with r = ||s; — sj|| and t = |t; — t;|.

m Second-order separability :
g((si. ti), (s, ) = gs(si, s))gr(ti, 1))

If & is also isotropic, g((si, ti), (s, t;)) = gs(r)gr(t).

On spatio-temporal point processes E. Gabriel



Second-order analysis of spatio-temporal point process data

Summary characteristics

Various summary characteristics have been proposed which describe
particular features of ®.

These are typically real number or functions based on inter-point (spatial
and temporal) distances.

Their interpretation is a question of experience (and somewhat of an
art!?)

2. Stoyan, Kendall & Mecke (1995) Stochastic geometry and its applications.
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Second-order analysis of spatio-temporal point process data

First-order characteristics : the intensity A(s, t)

The intensity (= point density) gives a global information about ¢.

It is of little value if alone.

The intensity influences the other summary characteristics.
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Second-order analysis of spatio-temporal point process data

Second-order characteristics : pcf and K-function

Ao ((si i), (5. 47))

The pair correlation function is g((sj, ti), (s, tj)) = Mo 6)\s. 1)
is Li jy L

For a 2"-order stationary and isotropic point process :

Aa(r,t
g(r, t) = %, with r = ||s; — 5;|| and t = |t; — t;]

and the K-function is defined by

)\K(r, t) = E[ mean number of points within distances r and t from any point ] .

Second-order characteristics give information on many scales of distances.

The pcf does not contain more information than K, but is easier for
interpretation (as non-cumulative).
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Second-order analysis of spatio-temporal point process data

Spatio-temporal inhomogeneous K-function 3

Second-order intensity reweighted stationarity? (SOIRS) :

A(si, ti) non-constant and Ax((sj, ti), (sj, tj)) = Aa(si — s, ti — tj)

For a SOIRS process, r,t > 0 and a compact B

1 Ljis—sli<rle—g1<ey
—V(B)]E |:Z(s,-,t,-)€¢ﬂ8 Z(sj-,tj)GCD\(s,-,t;) )‘(Si:t,-)A(sj,th)

K(r,t) =

If the process is also isotropic :

Time-directional version :

ot o r
K(r.t):2ﬁ/0 /Og(u.v)ududv

3. Gabriel & Diggle (2009), Statistica Neerlandica, 63 :43-51.
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Second-order analysis of spatio-temporal point process data

Distance and contact distribution functions

Two distribution functions of the distance -

L J
- from a point e = (s,, t,) of ® /; 7
(]
- from any point e = (s*,t*) in W . o<
Nge—
o\. ././

Nearest neighbor distance :

I '
61, ) = FId((50, ), O\ ({501 £0)]) < (1, 0] = 1K) | ] (17 “Mf%"g””f“'§”>
(16)€® A(si, t)

Empty space function :

B\
a - 1 M=t i<y <e}
H(r.t) = PLA((s", £),9) < (0] =1 - E L,E@ (1 AGsis ) )}

E.g : for clustered patterns, G gives information on the distances of the
points within clusters and H describes the extent of empty space between
clusters.
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Second-order analysis of spatio-temporal point process data

Spatio-temporal inhomogeneous J-function *

with
- G(r,t) = P[d((So, to), P\{(s0; to)}) < (r, t)] the nearest neighbor distance
-and H(r,t) = P[d((s*,t*), ®) < (r, t)] the empty space function :

For a SOIRS process,
J(r,t) =1~ =X (K(r,t) —27r’t),

with X = inf(s ) A(s, t).

4., Cronie & van Lieshout (2015) Scandinavian Journal of Statistics, 42(2) :562-579
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Second-order analysis of spatio-temporal point process data

Summary characteristics

Summary characteristics can be used for :

m Analyzing the spatio-temporal structure of a point pattern,

Statistic | Homogeneous Poisson process Regular | Random | Clustered
g(r,t) g(r,t)=1 <1 =1 >1
K(r,t) K(r,t) = 2nr’t <2nr’t | =2nr’t | > 2nr’t
J(r t) = pen G(r,t) = H(r,t) >1 =1 <1

= Deviation and pointwise envelop tests.

m Model fitting and estimation parameters.
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Second-order analysis of spatio-temporal point process data

Pointwise envelope tests based on 27-order moments

m Test of clustering/regularity

Hg . “the pattern is a realisation of a Poisson process with intensity A(s, t)
Under HS, g(r,t) =1 and K(r,t) = 27r?t

= Confidence envelopes built from simulations of a Pois (\(s, t)).

m Test of interaction

H(') . “the pattern is a realisation of a pair of independent spatial and temporal,

second-order intensity reweighted stationary point processes.”
Under Hé, K(r,t) o< Ks(r)Kr(t) (second-order separability).

= Confidence envelopes built by random labelling the locations of
events, holding their times fixed.
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Second-order analysis of spatio-temporal point process data

Deviation tests based on 29-order moments

Deviation measures :
m Integral deviation measure ftt"?“ [ (T(r,t) = Tay(r, )% drdt

m Supremum deviation measure sup(, o) | T(r,t) — T, (r, t)|

where T can be the K, g, J, ...

= Monte-Carlo tests with the deviation measure computed from
- the data, T;.
- simulations under Hy, T;, i =2,..., N.

Th, is often replaced by T.
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Second-order analysis of spatio-temporal point process data

Usual models and simulations

Hypotheses testing is often based on Monte Carlo simulations.

Various spatio-temporal models are implemented in the @ package
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Second-order analysis of spatio-temporal point process data

Spatio-temporal models

Independent processes

m Inhomogeneous Poisson processes are widely used.
m The position of the clusters is fixed.

m There is no interaction between points.

Dependent processes

m There is interaction between points.
m Patterns follow different principles :

@ aggregation : Poisson cluster process, contagious processes, . ..
e regularity : Inhibition process,
@ stochastic environment : Cox process.
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Second-order analysis of spatio-temporal point process data

Inhomogeneous Poisson process

It is the simplest non-stationary point process.

It is defined by the following postulates :

1. The number ®(Ws x Wr) of events within the region Ws x Wr
follows a Poisson distribution with mean [, [, A(s, t)dtds.

2. Given ®(Ws x W7) = n, the n events in Ws x W7t form an
independent random sample from the distribution on Ws x W7 with
probability density function f(s, t) = A(s, t)/ Jwg Jw, Ms' ') dt’ ds’.
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Second-order analysis of spatio-temporal point process data

Cox process

Definition
1. {A(s,t): (s, t) € Ws x Wt} is a non-negative-valued stochastic
process.

2. Conditional on {A(s,t) = A(s, t) : (s,t) € Ws x Wr}, the events
form an inhomogeneous Poisson process with intensity A(s, t).

Log-Gaussian Cox process : \(s, t) = exp(Z(s, t))
with Z(s, t) a real-valued Gaussian field.

Covariance models c(h, t) :
m Separable, non-separable.
m Isotropic, anisotropic.

g(r,t) = exp(c(r, t)).
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Second-order analysis of spatio-temporal point process data

Poisson Cluster Process

Definition
1. Parents form a Poisson process with intensity Ay(s, t).

2. The number of offspring per parent is a random variable N, with
mean mc, realised independently for each parent.

3. The positions and times of the offspring relative to their parents are
independently and identically distributed according to a trivariate
probability density function f(-) on R? x R*.

4. The final process is composed of the superposition of the offspring
only.

On spatio-temporal point processes E. Gabriel



Second-order analysis of spatio-temporal point process data

Poisson Cluster Process
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Second-order analysis of spatio-temporal point process data

Anisotropic Poisson Cluster Process

Geometric anisotropy : g(u, t) = go <\/ uX t),

where u € R? is a row vector with transpose u’, ¥ is a 2 X 2 symmetric positive definite

cos(d) —sin(0)

matrix of the form ¥ = w?Ugdiag(1, ¢2)U with Uy = .
bdiag(1, C)Up 0 sin(f)  cos(6)
1.0 2w,y %o o2 ‘if-.:}
8 ° ° 0%,
[ Sy,
o %g o 829,
82,2, .
08 ﬁ’??".%a ) :
L R o
gs¢ @s o
06| oot ° L, e g:u
Fop R
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Second-order analysis of spatio-temporal point process data

Interaction process

Inhibition process :
~> Make unlikely the occurrence of pairs of close events.

* Simple sequential inhibition process

1. s; and t; are uniformly distributed in Ws and Wy respectively.
2. At the kth step of the algorithm, k =2, ..., m,

sk ~UWsN{s:|ls—sil| >0s,j=1,...,k—1}]

e~ UWrn{t:|t—g| >0, j=1,...,k—1}].

ds, O+ : minimum permissible spatial and temporal distances between events.

* Larger class of inhibition :
Introduce in 2. the probability that a potential point (s, t) will be
accepted as a point of the process according to the R most recent events.
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Second-order analysis of spatio-temporal point process data

Inhibition process
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Second-order analysis of spatio-temporal point process data

Interaction process

Contagious process :

* Simple model :

1. sy and t; are uniformly distributed in Ws and W7 respectively.

2. At the kth step of the algorithm, given {(s;, t;),j =1,...,k — 1},
sk ~UWs N {s:||s — si—1]| < s},
e ~U[Wr N {t: |t — teea| < 6,

ds, 0+ : maximum permissible spatial and temporal distances between events.

* Larger class of contagion :
Introduce in 2. the probability that a potential point (s, t) will be
accepted as a point of the process according to the R most recent events.
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Second-order analysis of spatio-temporal point process data

Contagious process
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Second-order analysis of spatio-temporal point process data

Infectious process

Infectious disease : can be contracted by a person without their having
come into direct contact with an infected person
(# contagious disease : transmitted only by direct contact.)

Here, an infectious process is such that to each infected individual at a
time t there corresponds an infection rate h(t), which depends on

m a latent period «,

m the maximum infection rate 3,

m the infection period ~.

1. Choose the location s; and time t; of the first event.

2. Given {(sj, t),j=1,...,k— 1},
sk is either symmetrically distributed around sx_; or is a point in a
Poisson(A(s)),
ti is either uniformly or exponentially distributed around t;_;.
A potential point is accepted with probability px = f(h(t|tk—1, @, 8,7)).
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Second-order analysis of spatio-temporal point process data

Infectious process
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Second-order analysis of spatio-temporal point process data
Spatio-temporal modelling

m Empirical models : e.g. Cox process

Describe the point pattern without pointing to any particular underlying

mechanism

m Mechanistic models : e.g. Interaction process

Parameters make the link with generating process.

Properties of the process are specified conditionally on its realization up to the

current time.
Conditional intensity function : A(s, t|H:),

where H; is the history of the process up to time t

Diggle's 2013 book, Gabriel et al. (2013) and Gabriel (2016) papers,
and
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Second-order analysis of spatio-temporal point process data

Inference for spatio-temporal models

Method of moments

But in spatial statistics :

m moments often unreachable = (heavy) simulations.

m no solution or not unique.

Minimum contrast method
0 = argming fab | To(x) — E[To(x)]|? dx

Usually : 3 =2, T(x) = K(r,t).
Likelihood-based method

But the likelihood is unreachable, except for Poisson and Gibbs processes, or

approximately for Cox processes.
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Estimation of the second moment measures
Estimating 29-order moments

Non-parametric estimation®

1 H{lls,—sml<r lt—gl<t)

Rirt) = ZZW,, 55 00\(51 )

Ilﬁél

L ks(r —lIsi — sjll)ke(t — |t — )

g(r.t) =
4rr ,2; ; )\(S,', t,')>\(5j, l'j)
where wj; is an edge correction factor,
ks(-), ke(-) are kernel functions (usually box or epanechnikov kernels).

5. Gabriel & Diggle (2009) ; Gabriel (2014).
On spatio-temporal point processes
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Estimation of the second moment measures

Estimating 29-order moments

Problems :

(1) Edge effects have to be corrected.
(2) A(s,t) is not known and have to be estimated.

= Which method can be used to correct edge effects?
to estimate A(s, t)? R see Gabriel (2014)
What are their influence on the performance of K, g?
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Estimation of the second moment measures

Edge correction methods®

m |sotropic method :

,.(.5) is the Ripley's method : proportion of the circumference of a circle

where w;;

centred at the location s; with radius ||s; — s;| lying in W,

w'® = 1 if both ends of the interval of length 2|t; — t;| centred at t; lie within

U)

Wr and w(?) = 1/2 otherwise.
m Border method :

where d(s;, Ws) (resp. d(t;, Wt)) denotes the distance between s; (resp. t;)
and the boundary of Ws (resp. Wr).

m Translation method :

where Ws___ and Wy, are the translated spatial and temporal regions.
i it

¥

6. Gabriel (2014) Methodology and Computing in Applied Probability, 16(2) :411-431.
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Estimation of the second moment measures

Performances wrt edge correction methods

Performance of K and g for (in)homogeneous and/or
(an)isotropic point patterns

Highest relative variance efficiency of [ fot(?(u, v) — T(u,v))?dudv
with T = K or T = g obtained for

K g
Homogeneous Poisson process Border Border
Inhomogeneous Poisson process Border  Translation
Isotropic clustered process Translation  Translation
Anisotropic clustered process - Translation
(Weakly) Inhomogeneous clustered process Translation  Translation
(Strongly) Inhomogeneous clustered process Border Border
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Estimation of the second moment measures

Analyzing anisotropic point patterns’

For a SOIRS process 9,

1 Igysi—s H<r‘ ti—t)| <t:A(si,5,) <0}
t 9 i j i i J 192)
(r Z; wi Al )M 1)

with A(s;j, sj) the least angle between the x-axis and the line defined by s; and s;.

If ® is stationary and isotropic,

K(r,t) = K(r,t,2m) = 2K(r, t, 7).

7. Comas, Rodriguez-Cortes, Mateu (2015)
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Estimation of the second moment measures

Analyzing anisotropic point patterns

Testing anisotropic effects®

For a SOIRS and isotropic process,

0 Fmax tmax ™ Fmax tmax
o)~ [ [T [ ekt [ [T akirne)
0 Fm, t, 0 r, t,

in min min min
is uniform on [0, 7).
Kolmogorov test based on

D= sup [O(0)—0/¢l.
0€[0,m)

8. Comas, Conde, Mateu (2016)
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Estimation of the second moment measures

Analyzing marked point patterns

A marked point process is a point process with characteristics attached
to each point.

A spatio-temporal marked point process is random sequence {[x;, m;]}
from which

m the points x; = (s;, t;) together constitute a point process in R? x R,

m the m; are the marks belonging to a given space of marks M.

See Ottmar and Francisco talks!
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Estimation and prediction of the intensity

Estimating 1°'-order moments

Intensity estimation (see e.g. lllian et al., 2008)

Kernel estimation

m Useful when there is no covariates.
m The first-order separability is assumed.

m (s, ) = Lhs(s)Ar(2),

with As(s) = 30, kchv(vssz;f)) and kp a bivariate kernel with bandwidth h and

cws(si) = st kn(s — s;) ds is an edge-correction factor to guarantee that
st A(s)ds = n.

Parametric estimation (see Thomas' talk)
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Estimation and prediction of the intensity

Estimating 1°'-order moments

Performance of g and K may be severely altered by N

~~ parametric estimation : overparametrisation or overfitting,

~ kernel estimation : incapacity of distinguish 15t and 29-order effects
from a single realisation of the point process.

= assumption : 1%-order effects operate at larger scale than the
29-order effects.

@ care needed when partitioning spatio-temporal patterns into 15

and 29-order effects: the knowledge about the environment is crucial.
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Estimation and prediction of the intensity

Predicting the 1-order intensity °

How to get the intensity outside the observation window ?

For a SOIRS point process ® observed in W and x, ¢ W,
(0lw) = [ w6 30) oy e, 3¢ —¥)dx = Ty, (3 %0)

is the Best Linear Unbiased Predictor of A(x,|®w ), with § the dirac delta
function.

9. Gabriel, Coville & Chadeeuf (2017) Spatial Statistics + work in progress with F. Rodriguez, J. Mateu
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Estimation and prediction of the intensity

Predicting the 1°-order intensity

The weight function w(x; x,) satisfies the constraint

/W A(X)w(x; o) dx = A(xo)

and is solution of the Fredholm equation of the second kind :

Al e) + | Mpholyixo)klx,y) dy = Fxix).

with kernel

k(x,y) = A(x) <g(>< -y)— fiz)d/ Az)g(z—y) d2>

and source term

f(x; %0) = AMX)A(%0) <f N2) +g(x — Xo) — m /Wg(z —xo)dz> .
w
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Estimation and prediction of the intensity

Approximated solution

Finite element approach

The Galerkin method, with 7, a mesh partitioning W and V}, an
approximation space, plugged into a weak formulation of the Fredholm

equation, leads to :

ZWJ/ (%(X )ei(x) +/ / k(% ¥)ei(y)ei(x) dy) / f(x: %0 )pi(x) dx,

with w(x; xo) ~ Z,N:1 w;pi(x), N =dim V} and {p;}i—1,.. n a basis of V.
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Estimation and prediction of the intensity

lllustrative results in 2D (1)

Simulation of a Thomas process within [0, 1] x [0, 1]
Parents : Pois(p), p = 50

Offspring : Pois(k), k = 10, normally distributed, with & = 0.05
Prediction within W ,0ps

107
Point process Pair correlation
realization function

5

'

3

2

1

0

W 005 01 015 020

A = kp = 500 g(r):1+ﬁex”(’

{o} :dy ; {o}: 0y

unobs
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Estimation and prediction of the intensity

lllustrative results in 2D (1)

Weight function w(-; x,)

Prediction in W Xo = (0.38,0.57)

{o}: ¢Wobs
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Estimation and prediction of the intensity

lllustrative results in 2D (2)

Simulation of a cluster process within [0, 10] x [0, 10]

Parents : hardcore process with interaction radius 0.5

Offspring : normally distributed, with o = 0.1

Point process

realization

Pair correlation

function

{o} s 0y ;
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{e} : 0y,

unobs

10

Prediction within W,,,0ps

i o




Estimation and prediction of the intensity

Application : in 2D

Montagu's Harriers nest locations

LTER Zone Atelier ‘Plaine & Val de Sévre’

ey

2150

2145 -

e

2140 -

2135 -

200

2130+

213
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Estimation and prediction of the intensity

Application : in 3D

...work in progress
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