Extending the toolbox – inlabru – what can it do?

Janine Illian

CREEM Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Scotland, UK

November 9, 2018

joint work with: Fabian Bachl, Finn Lindgren, David Borchers

model family:

latent Gaussian model with (hyper)parameters θ , latent Gaussian variables x, and observations y:

model family:

latent Gaussian model with (hyper)parameters θ , latent Gaussian variables x, and observations y:

$$\begin{split} \boldsymbol{\theta} &\sim p(\boldsymbol{\theta}), \\ \boldsymbol{x} | \boldsymbol{\theta} &\sim p(\boldsymbol{x} | \boldsymbol{\theta}) \sim \mathsf{N}(\boldsymbol{0}, \boldsymbol{Q}_x^{-1}), \\ \boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta} &\sim p(\boldsymbol{y} | \boldsymbol{\eta}(\boldsymbol{x}), \boldsymbol{\theta}) \end{split}$$

model family:

latent Gaussian model with (hyper)parameters θ , latent Gaussian variables x, and observations y:

$$\begin{split} \boldsymbol{\theta} &\sim p(\boldsymbol{\theta}), \\ \boldsymbol{x} | \boldsymbol{\theta} &\sim p(\boldsymbol{x} | \boldsymbol{\theta}) \sim \mathsf{N}(\boldsymbol{0}, \boldsymbol{Q}_x^{-1}), \\ \boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\theta} &\sim p(\boldsymbol{y} | \boldsymbol{\eta}(\boldsymbol{x}), \boldsymbol{\theta}) \end{split}$$

the linear predictor $\pmb{\eta}(\cdot)$ controls a location parameter of the likelihood:

$$g[\mathsf{E}(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})] = \boldsymbol{\eta}(\boldsymbol{x})$$

INLA nests optimisation over x within optimisation over θ , followed by numerical integration over θ

INLA nests optimisation over x within optimisation over $\theta,$ followed by numerical integration over θ

ullet conditional posterior mode of $p({\boldsymbol x}|{\boldsymbol \theta},{\boldsymbol y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x}|oldsymbol{ heta}) p(oldsymbol{y}|oldsymbol{x},oldsymbol{ heta})
ight\}$$

INLA nests optimisation over x within optimisation over θ , followed by numerical integration over θ

• conditional posterior mode of $p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x} | oldsymbol{ heta}) p(oldsymbol{y} | oldsymbol{x}, oldsymbol{ heta})
ight\}$$

• parameter posterior density:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) \propto \left. \frac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})} \right|_{\boldsymbol{x}=\boldsymbol{x}^{*}(\boldsymbol{\theta})}$$

INLA nests optimisation over x within optimisation over $\theta,$ followed by numerical integration over θ

 \bullet conditional posterior mode of $p({\boldsymbol x}|{\boldsymbol \theta}, {\boldsymbol y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x} | oldsymbol{ heta}) p(oldsymbol{y} | oldsymbol{x}, oldsymbol{ heta})
ight\}$$

• parameter posterior density:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) \propto \left. rac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})}
ight|_{\boldsymbol{x}=\boldsymbol{x}^{*}(\boldsymbol{\theta})}$$

Laplace approximation:

Taylor series matching of $p(\pmb{x}|\pmb{\theta},\pmb{y})$ to a multivariate Gaussian density $\widetilde{p}(\pmb{x}|\pmb{\theta},\pmb{y})$

INLA nests optimisation over x within optimisation over θ , followed by numerical integration over θ

INLA nests optimisation over x within optimisation over $\theta,$ followed by numerical integration over θ

ullet conditional posterior mode of $p({\boldsymbol x}|{\boldsymbol \theta},{\boldsymbol y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x}|oldsymbol{ heta}) p(oldsymbol{y}|oldsymbol{x},oldsymbol{ heta})
ight\}$$

INLA nests optimisation over x within optimisation over $\theta,$ followed by numerical integration over θ

• conditional posterior mode of $p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x} | oldsymbol{ heta}) p(oldsymbol{y} | oldsymbol{x}, oldsymbol{ heta})
ight\}$$

• parameter posterior density:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) \propto \left. \frac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})} \right|_{\boldsymbol{x}=\boldsymbol{x}^{*}(\boldsymbol{\theta})}$$

INLA nests optimisation over x within optimisation over $\theta,$ followed by numerical integration over θ

 \bullet conditional posterior mode of $p({\boldsymbol x}|{\boldsymbol \theta},{\boldsymbol y})$ is

$$oldsymbol{x}^*(oldsymbol{ heta}) = rgmax_{oldsymbol{x}} \left\{ p(oldsymbol{x} | oldsymbol{ heta}) p(oldsymbol{y} | oldsymbol{x}, oldsymbol{ heta})
ight\}$$

• parameter posterior density:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) \propto \left. rac{p(\boldsymbol{\theta})p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{p(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})}
ight|_{\boldsymbol{x}=\boldsymbol{x}^{*}(\boldsymbol{\theta})}$$

Laplace approximation:

Taylor series matching of $p(\pmb{x}|\pmb{\theta},\pmb{y})$ to a multivariate Gaussian density $\widetilde{p}(\pmb{x}|\pmb{\theta},\pmb{y})$

What INLA cannot do...

INLA assumes that entire pattern has been observed

What INLA cannot do...

INLA assumes that entire pattern has been observed \Rightarrow not realistic in many ecological applications

inlabru

inlabru

 \Rightarrow wrapper around *R*-INLA + extra functionality

inlabru

- \Rightarrow wrapper around *R*-INLA + extra functionality
 - R-library that makes INLA more accessible
 - in particular: easier coding for spatial point processes

inlabru

- \Rightarrow wrapper around *R*-INLA + extra functionality
 - R-library that makes INLA more accessible
 - in particular: easier coding for spatial point processes
 - takes observation process into account (e.g. for distance sampling, plot sampling)

inlabru

- \Rightarrow wrapper around *R*-INLA + extra functionality
 - R-library that makes INLA more accessible
 - in particular: easier coding for spatial point processes
 - takes observation process into account (e.g. for distance sampling, plot sampling)

in essence: integrated fitting of observation process (detection) and ecological process of interest

inlabru

- \Rightarrow wrapper around *R*-INLA + extra functionality
 - R-library that makes INLA more accessible
 - in particular: easier coding for spatial point processes
 - takes observation process into account (e.g. for distance sampling, plot sampling)

in essence: integrated fitting of observation process (detection) and ecological process of interest

issue: needs to be linear in the latent variables

what if $\eta(x)$ is non-linear (and parametric)?

what if $oldsymbol{\eta}(oldsymbol{x})$ is non-linear (and parametric)?

example: non-linear detection function, detection depends on size

what if $\eta(x)$ is non-linear (and parametric)? **example:** non-linear detection function, detection depends on size \Rightarrow use Taylor series to linearise:

$$\eta(x) = \eta_k + A_k(x - x_k) + O(||x - x_k||^2),$$

where A_k is the Jacobian

what if $\eta(x)$ is non-linear (and parametric)? **example:** non-linear detection function, detection depends on size \Rightarrow use Taylor series to linearise:

$$\eta(x) = \eta_k + A_k(x - x_k) + O(||x - x_k||^2),$$

where A_k is the Jacobian

Iterate over linearisation points, $\{m{x}_0,m{x}_1,m{x}_2,\dots\}$,

• Start at some \boldsymbol{x}_0 , and repeat the following for $k=0,1,2,\ldots$

2 Let
$$\overline{\eta}_k(x) = \eta_k + A_k(x - x_k)$$

what if $\eta(x)$ is non-linear (and parametric)? **example:** non-linear detection function, detection depends on size \Rightarrow use Taylor series to linearise:

$$\eta(x) = \eta_k + A_k(x - x_k) + O(||x - x_k||^2),$$

where A_k is the Jacobian

Iterate over linearisation points, $\{m{x}_0,m{x}_1,m{x}_2,\dots\}$,

 $\bullet \quad \text{Start at some } \boldsymbol{x}_0 \text{, and repeat the following for } k=0,1,2,\ldots$

2 Let
$$\overline{oldsymbol{\eta}}_k(oldsymbol{x}) = oldsymbol{\eta}_k + oldsymbol{A}_k(oldsymbol{x} - oldsymbol{x}_k)$$

- Run INLA on the linearised problem, generating the mode (θ_k^*, x_k^*) = ($\theta_k^*, x_k^*(\theta_k^*)$)
- Let $x_{k+1} = x_k^*$

in practice... ecology

interested in individuals (in space and time)

in practice:

need to gain information on individuals – given practical limitations

in practice:

- need to gain information on individuals given practical limitations
- \Rightarrow specific observation process

in practice:

- need to gain information on individuals given practical limitations
- \Rightarrow specific observation process
- \Rightarrow specific data structure

in practice:

- need to gain information on individuals given practical limitations
- \Rightarrow specific observation process
- \Rightarrow specific data structure
- \Rightarrow specific statistical methodology

in practice:

- need to gain information on individuals given practical limitations
- \Rightarrow specific observation process
- \Rightarrow specific data structure
- \Rightarrow specific statistical methodology

here:

- "think" in terms of the underlying structure, the point process
- observation process is operation on the underlying data structure
- \Rightarrow more general methodology and software

in practice... ecology

• convenient integrated model fitting

- convenient integrated model fitting
- flexible detection functions
- detection may depend on marks (size etc.)

- convenient integrated model fitting
- flexible detection functions
- detection may depend on marks (size etc.)

BUT: what about if you are not interested in distance sampling ...?

- convenient integrated model fitting
- flexible detection functions
- detection may depend on marks (size etc.)

BUT: what about if you are not interested in distance sampling ...?

• user-friendly software inlabru for complex models

- convenient integrated model fitting
- flexible detection functions
- detection may depend on marks (size etc.)

BUT: what about if you are not interested in distance sampling ...?

- user-friendly software inlabru for complex models
- other observation processes may be seen as different types of "thinnings"

in practice... other users

- $\Rightarrow\,$ unified approach, general software
 - can fit general spatial models (no thinning) elegantly

- $\Rightarrow\,$ unified approach, general software
 - can fit general spatial models (no thinning) elegantly
 - dropping linearity assumption applicable in many contexts

- \Rightarrow unified approach, general software
 - can fit general spatial models (no thinning) elegantly
 - dropping linearity assumption applicable in many contexts
 - can interpret (univariate) function as one-dimensional LGCP

- \Rightarrow unified approach, general software
 - can fit general spatial models (no thinning) elegantly
 - dropping linearity assumption applicable in many contexts
 - can interpret (univariate) function as one-dimensional LGCP
- \Rightarrow use *inlabru* for function estimation (detection function, pdfs, *K*-functions...)

- \Rightarrow unified approach, general software
 - can fit general spatial models (no thinning) elegantly
 - dropping linearity assumption applicable in many contexts
 - can interpret (univariate) function as one-dimensional LGCP
- \Rightarrow use *inlabru* for function estimation (detection function, pdfs, *K*-functions...)

in essence:

very general and flexible methodology and associated software