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INLA – latent Gaussian models

model family:
latent Gaussian model with (hyper)parameters θ, latent Gaussian
variables x, and observations y:

θ ∼ p(θ),

x|θ ∼ p(x|θ) ∼ N(0,Q−1
x ),

y|x,θ ∼ p(y|η(x),θ)

the linear predictor η(·) controls a location parameter of the
likelihood:

g[E(y|x,θ)] = η(x)
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INLA – optimisation

INLA nests optimisation over x within optimisation over θ,
followed by numerical integration over θ

conditional posterior mode of p(x|θ,y) is

x∗(θ) = argmax
x

{p(x|θ)p(y|x,θ)}

parameter posterior density:

p(θ|y) ∝ p(θ)p(x|θ)p(y|x,θ)
p(x|θ,y)

∣∣∣∣
x=x∗(θ)

Laplace approximation:

Taylor series matching of p(x|θ,y) to a multivariate Gaussian
density p̃(x|θ,y)
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What INLA cannot do...

INLA assumes that entire pattern has been observed

⇒ not realistic in many ecological applications
interpret observed data as thinned point pattern

inlabru

⇒ wrapper around R-INLA + extra functionality

R-library that makes INLA more accessible

in particular: easier coding for spatial point processes

takes observation process into account (e.g. for distance
sampling, plot sampling)

in essence: integrated fitting of observation process (detection)
and ecological process of interest

issue: needs to be linear in the latent variables
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INLA – non-linear predictors

what if η(x) is non-linear (and parametric)?

example: non-linear detection function, detection depends on size

⇒ use Taylor series to linearise:

η(x) = ηk +Ak(x− xk) +O(‖x− xk‖2),

where Ak is the Jacobian

Iterate over linearisation points, {x0,x1,x2, . . . },
1 Start at some x0, and repeat the following for k = 0, 1, 2, . . .

2 Let ηk(x) = ηk +Ak(x− xk)

3 Run INLA on the linearised problem, generating the mode
(θ∗k,x

∗
k) = (θ∗k,x

∗
k(θ

∗
k))

4 Let xk+1 = x
∗
k
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in practice... ecology

interested in individuals (in space and time)

in practice:

need to gain information on individuals – given practical
limitations

⇒ specific observation process

⇒ specific data structure

⇒ specific statistical methodology

here:

“think” in terms of the underlying structure, the point process

observation process is operation on the underlying data
structure

⇒ more general methodology and software
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in practice... ecology

for distance sampling

convenient integrated model fitting

flexible detection functions

detection may depend on marks (size etc.)

BUT: what about if you are not interested in distance sampling...?

user-friendly software inlabru for complex models

other observation processes may be seen as different types of
“thinnings”
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in practice... other users

⇒ unified approach, general software

can fit general spatial models (no thinning) elegantly

dropping linearity assumption – applicable in many contexts

can interpret (univariate) function as one-dimensional LGCP

⇒ use inlabru for function estimation (detection function, pdfs,
K-functions...)

in essence:
very general and flexible methodology and associated software
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